Soil organic carbon in riparian forests, rice fields, and pastures in Piedras, Tolima, Colombia.

Authors

  • Hernán Jair Andrade-Castañeda Universidad del Tolima, Facultad de Ingeniería Agronómica, Grupo de Investigación Producción Ecoamigable de Cultivos Tropicales (PROECUT)
  • Milena Andrea Segura-Madrigal Universidad del Tolima, Facultad de Ingeniería Agronómica, Grupo de Investigación Producción Ecoamigable de Cultivos Tropicales (PROECUT)
  • Andrés Sebastián Rojas-Patiño Universidad del Tolima, Facultad de Ingeniería Agronómica, Grupo de Investigación Producción Ecoamigable de Cultivos Tropicales (PROECUT)

DOI:

https://doi.org/10.15517/am.v27i2.24359

Keywords:

land use changes, greenhouse gases, carbon sinks.

Abstract

The aim of the study was to estimate the soil organic carbon (SOC) storage in the interface between riparian forests and a matrix of rice fields and pastures with organic management. The study took place in Piedras, Tolima, Colombia. Two plots in production (rice and pasture) were selected and SOC was estimated in these areas and in the edge and the interior of adjacent riparian forests at a depth of 0 to 20 cm. Bulk density and SOC concentration were quantified between May and July, 2013. Potential change in SOC storage due to land use change among rice fields, pastures, and riparian forests was estimated. The interfaces rice field-riparian forest and pasture-riparian forest stored an average of 65.6 and 61.3 t C/ha, respectively, with no statistical differences (p>0.05). Statistical differences were not detected (p>0.05) between agricultural matrices (rice fields and pastures) in any of the variables. The sampling position (matrix and the edge and interior of forests) had a significant impact (p<0.05) just in bulk density: 1.7 vs 1.1 vs 1.0 g/cm3 in interior and edge of the riparian forests and the matrix, respectively. SOC was not statistically affected (p>0.05) by the position in the riparian forest-matrix interface. Conversion from riparian forests to rice fields or pastures with organic management is not emitting greenhouse gases, on the contrary, it is increasing SOC in 3.2 t C/ha. 

Downloads

Download data is not yet available.

References

Alcaldía de Piedras – Tolima. 2014. Nuestro municipio: información general. http://www.piedras-tolima.gov. co/informacion_general.shtml (consultado 2 oct. 2014).

Alcaldía Municipal de Piedras. 2008. Plan de desarrollo Alcaldía Municipal de Piedras Tolima “gobierno de oportunidades para nuestra gente”. Alcaldía Municipal de Piedras. Piedras, Tolima, COL.

Alvarado, J., H.J. Andrade, y M. Segura. 2013. Almacenamiento de carbono orgánico en suelos en sistemas de producción de café (Coffea arabica L.) en el municipio del Líbano, Tolima, Colombia. Col. For. 16:21-31.

Amézquita, M.C., P. Buurman, and M.A. Ibrahim. 2008. C stocks and sequestration. In: L. ‘tMannetje et al., editors, Carbon sequestration in tropical grassland ecosystems. Wageningen Academic Publishers, HOL. p. 49-63.

Andrade, H., y M. Ibrahim. 2003. ¿Cómo monitorear el secuestro de carbono en los sistemas silvopastoriles? Agroforestería en las Américas 10:109-116.

Andrade, H.J., R. Brook, and M. Ibrahim. 2008. Growth, production and carbon sequestration of silvopastoral systems with native timber species in the dry lowlands of Costa Rica. Plant Soil 308:11-22.

Andrade, H.J., E.L. Espinoza, and H.A. Moreno. 2014. Impact of grazing on soil organic storage carbon in high lands of Anaime, Tolima, Colombia. Zootec. Trop. 32:7-21.

Arcos, I. 2005. Efecto del ancho de los ecosistemas riparios en la conservación de la calidad del agua y la biodiversidad en la microcuenca del río Sesesmiles, Copán, Honduras. Tesis MSc., CATIE, Turrialba, CRC.

Baccini, A., S.J. Goetz, W.S. Walker, N.T. Laporte, M. Sun, D. Sulla, J. Hackler, P.S.A. Beck, R. Dubayah, M.A. Friedl, S. Samanta., and R.A. Houghton. 2012. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2:182-185.

Batjes, N.H. 1999. Management options for reducing CO2 - concentrations in the atmosphere by increasing carbon sequestration in the soil. ISRIC. Wageningen, HOL.

Carvajal, A.F., A. Feijoo, H.Y. Quintero, y M.A. Rondón. 2009. Carbono orgánico del suelo en diferentes usos del terreno de paisajes andinos colombianos. R. C. Suelo Nutr. Veg. 9:222-235.

Corporación Autónoma Regional del Tolima. 2009. Agenda ambiental del municipio de Piedras, Documento Técnico. 15. http://www.cortolima.gov.co/sites/default/files/images/stories/centro_documentos/estudios/agendas/2009_Agenda_Ambiental_del_Municipio_de_Piedras.pdf (consultado 11 may. 2015).

Decaëns, T., N. Asakawa, J.H. Galvis, R.J. Thomas, and E. Amézquita. 2002. Surface activity of soil ecosystem engineers and soil structure in contrasted land use systems of Colombia. Eur. J. Soil Biol. 38:267-271.

Desjardins, T., P.J. Folgarait, A. Pando-Bahuon, C. Girardin, and P. Lavelle. 2006. Soil organic matter dynamics along a rice chronosequence in north-eastern Argentina: Evidence from natural 13C abundance and particle size fractionation. Soil Biol. Biochem. 38:2753-2761.

Ellert, B.H., H.H. Janzen, and T. Entz. 2002. Assessment of a method to measure temporal change in soil C storage. SSSAJ 66:1687-1695.

FAO. 2002a. Captura de carbono en los suelos para un mejor manejo de la tierra. FAO, Roma, ITA.

FAO. 2002b. Estado de la información forestal en Colombia. FAO, Santiago, CHI.

FAO. 2010. Evaluación de los recursos forestales mundiales. FAO, Roma, ITA.

Fassbender, H., y E. Bornemisza. 1994. Química de suelos: con énfasis en suelos de América Latina. IICA. San José, CRC.

Fassbender, H. 1993. Ciclos de la materia orgánica. En Modelos edafológicos de sistemas agroforestales. 2da ed. CATIE. Turrialba. CRC. p. 165-294.

Fearnside, P.M., and R.I. Barbosa. 1998. Soil carbon changes from conversion of forest to pasture in Brazilian Amazonia. For. Ecol. Manag. 108:147-166.

Holdridge, L. 1996. Ecología basada en zonas de vida. 4ª reimpresión. IICA, San José, CRC.

IGAC (Instituto Geográfico Agustín Codazzi). 2004. Estudio general de suelos y zonificación de tierras. Departamento de Tolima, Bogotá DC, COL.

IPCC (Intergovernmental Panel on Climate Change). 1996. Report of the twelfth session of the intergovernmental panel on climate change. In: IPCC, editor, Revised 1996 guidelines for national greenhouse gas inventories. IPCC, MEX.

IPCC (Intergovernmental Panel on Climate Change). 2013. Cambio climático 2013: bases físicas. Contribución del grupo de trabajo I al quinto informe de evaluación del grupo intergubernamental de expertos sobre el cambio climático. IPCC, Ginebra, SUI.

Jiang, X., A.L. Wright, X. Wang, and F. Liang. 2011. Tillageinduced changes in fungal and bacterial biomass associated with soil aggregates: a long-term field study in a subtropical rice soil in China. Appl. Soil Ecol. 48:168-173.

Jiménez, J.J., K. Lorenz, and R. Lal. 2011. Organic carbon and nitrogen in soil particle-size aggregates under dry tropical forests from Guanacaste, Costa Rica — Implications for within-site soil organic carbon stabilization. Catena 86:178-191.

Lal, R. 2004. Soil carbon sequestration impacts of global climate change and food security. Sci. 304:1623-1627.

Lavelle, P., N. Rodríguez, O. Arguello, J. Bernal, C. Botero, P. Chavarro, Y. Gómez, A. Gutiérrez, M.P. Hurtado, S. Loaiza, S.X. Pulido, E. Rodríguez, C. Sanabria, E. Velásquez, and S.J. Fonte. 2014. Soil ecosystem services and land use in the rapidly changing Orinoco River Basin of Colombia. Agric. Ecosys. Environ. 185:106-117.

MacDiken, K. 1997. A guide to monitoring carbon storage in forestry and agroforestry projects. Winrock International, Arlington, VA, USA.

Martínez, E., J.P. Fuentes, y E. Acevedo. 2008. Carbono orgánico y propiedades del suelo. R.C. Suelo Nutr. Veg. 8:68-96.

Mosquera, O., P. Buurman, B.L. Ramírez, and M.C. Amézquita. 2012. Carbon replacement and stability changes in short-term silvo-pastoral experiments in Colombian Amazonia. Geoderma 170:56-63.

Naciones Unidas. 1998. Protocolo de Kyoto de la convención marco de las Naciones Unidas sobre el cambio climático. Naciones Unidas, WA, USA.

Oldeman, L.R., R.T.A. Hakkeling, and W.G. Sombroek. 1991. World map of the status of human induced soil degradation: an explanatory note. 2nd ed. United Nation Environment Programme, Nairobi, KEN.

Perie, C., and R. Ouimet. 2007. Organic carbon, organic matter and bulk density relationships in boreal forest soils. Canadian J. Soil Sci. 38:315-325.

Pinno, B., and S. Wilson. 2011. Ecosystem carbon changes with woody encroachment of grassland in the northern Great Plains. Ecoscience 18:157-163.

Rhoades, C., S. Miller, and M. Shea. 2004. Soil properties and soil nitrogen dynamics of prairie-like forest openings and surrounding forests in Kentucky’s Knobs Region. Am. Midl. Nat. 152:1-11.

Steel, R.G., y J.H. Torrie. 1988. Bioestadística: principios y procedimientos. 2ª ed. McGraw-Hill, MEX.

Van Oudenhoven, A.P.E., K. Petz, R. Alkemade, L. Hein, and R.S. de Groot. 2012. Framework for systematic indicator selection to assess effects of land management on ecosystem services. Ecol. Indic. 21:110-122.

Walkley, A., and C.A. Black. 1934. An examination of the Degtajareff’s method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37:29-38.

Wang, H., D. Guan, R. Zhang, Y. Chen, Y. Hu., and L. Xiao. 2014. Soil aggregates and organic carbon affected by the land use change from rice paddy to vegetable field. Ecol. Eng. 70:206-211.

Wantzen, K.M., E.G. Couto, E.E. Mund, R.S.S. Amorim, A. Siqueira, K. Tielbörger, and M. Seifan. 2012. Soil carbon stocks in stream-valley-ecosystems in the Brazilian Cerrado agroscape. Agric. Ecosys. Environ. 151:70-79.

Zotarelli, L., B. Alves, S. Urquiaga, E. Torres, H.P Dos Santos, K. Paustian, R.M. Boddey, and J. Seis. 2005. Impact of tillage and crop rotation on aggregateassociated carbon in two oxisols. Soil Sci. Am. J. 69:482-49.

Published

2016-06-20

How to Cite

Andrade-Castañeda, H. J., Segura-Madrigal, M. A., & Rojas-Patiño, A. S. (2016). Soil organic carbon in riparian forests, rice fields, and pastures in Piedras, Tolima, Colombia. Agronomía Mesoamericana, 27(2), 233–241. https://doi.org/10.15517/am.v27i2.24359