Methane fluxes in soils with pasture covers in the North of Colombia
DOI:
https://doi.org/10.15517/am.v31i2.38387Keywords:
greenhouse gases, soil properties, Panicum, Brachiaria, Livestock productionAbstract
Introduction. Traditional livestock production systems in Colombia are based on the establishment of pastures on large tracts of land, which generate greenhouse gases such as methane. Objective. The objective of the present study was to monitor the monthly methane fluxes that occur in meadows with three soil covers and three levels of nitrogen fertilization. Materials and methods. Methane fluxes were monitored for a year from November 2014 to November 2015, on a Vertic Endoaquepts soil, placed in the middle valley of the Sinu river, Colombia. A full block design was used at random, arranged in divided plots, with two replications. The main plots constituted of two grasses (Brachiaria humidicola CIAT679 and Panicum maximum cv. Tanzania) and one with bare soil, and the subplots by three nitrogen fertilization levels (0, 150, 300 kg N ha-1). Additionally, soil physicochemical properties were evaluated. Results. During most of the year (rainy and dry season) methane oxidation occurred, associated with the loam texture and porosity of the soil in the study area, which allowed the free diffusion of gases in the soil. Correlation analyzes showed a close relationship between methane fluxes, porosity, moisture, soil bulk density, and ambient temperature, suggesting these parameters as the main factors that affect the monthly methane flow. Conclusions. Methane fluxes were independent of the type of plant material and nitrogen fertilization evaluated. These flows depended on the time of year (dry and rainy) and exhibited a negative annual balance in the study area, which suggests that these systems have the conditions to behave as methane sinks during most of the year.
Downloads
References
Aronson, E.L., and B.R. Helliker. 2010. Methane flux in non-wetland soils in response to nitrogen addition: a meta-analysis. Ecology 91:3242-3251. doi:10.1890/09-2185.1
Bernabé, Y., and A. Maineult. 2015. Physics of porous media: fluid flow through porous media. In: G. Schubert, editor, Treatise on geophysics. 2nd ed. Vol 11. Resources in near-surface earth. Elsevier, Amsterdam, NLD. p. 19-41. doi:10.1016/b978-0-444-53802-4.00188-3
Boeckx, P., O. Cleemput, and I. Cillaralvo. 1997. Methane oxidation in soils with different textures and land use. Nutrient Cycling Agroecosyst. 49:91-95. doi:10.1023/A:1009706324386
Born, M., H. Dörr, and I. Levin. 1990. Methane consumption in aerated soils of the temperate zone. Tellus 42(1):2-8. doi:10.1034/j.1600-0889.1990.00002.x
Bradford, M., P. Ineson, P. Wookey, and H. Lappin-Scott. 2001. The effects of acid nitrogen and acid sulphur deposition on CH4 oxidation in a forest soil: a laboratory study. Soil Biol. Biochem. 33:1695-1702. doi:10.1016/s0038-0717(01)00091-8
Burt, R. 2014. Soil survey field and laboratory methods manual. Soil Survey Investigations Report No. 51, Version 2. US Department of Agriculture, Natural Resources Conservation Service, WA, USA.
Capa, M.E.D. 2015. Efecto de la fertilización orgánica y mineral en las propiedades del suelo, la emisión de los principales gases de efecto invernadero y en las diferentes fases fenológicas del cultivo de café (Coffea arabica L.). Tesis Ph.D., Universidad de Madrid, Madrid, ESP.
Castro, M.S., H.L. Gholz, K.L. Clark, and P.A. Steudler. 2000. Effects of forest harvesting on soil methane fluxes in Florida slash pine plantations. Can. J. For. Res. 30:1534-1542. doi:10.1139/cjfr-30-10-1534
Charmley, E., S.R.O. Williams, P.J. Moate, R.S. Hegarty, R.M. Herd, V.H. Oddy, P. Reyenga; K.M. Staunton, A. Anderson, and M.C. Hannah. 2016. A universal equation to predict methane production of forage-fed cattle in Australia. Anim. Prod. Sci. 56(3):169-180. doi:10.1071/an15365
Chu, H., Y. Hosen, and K. Yagi. 2007. NO, N2O, CH4 and CO2 fluxes in winter barley field of Japanese Andisol as affected by N fertilizer management. Soil Biol. Biochem. 39:330-339. doi:10.1016/j.soilbio.2006.08.003
Clark, H. 2016. The estimation and mitigation of agricultural greenhouse gas emissions from livestock. In: D. Yulistiani, editors, Proceedings of International Seminar on Livestock Production and Veterinary Technology. Indonesian Agency for Agricultural Research Development, IDN. p. 5-13. doi:10.14334/proc.intsem.lpvt-2016-p.5-13
Di-Rienzo, J., F. Casanoves, M. Balzarina, L. Gonzalez, M. Tablada, y C. Robledo. 2018. Infostat versión 2018. Universidad Nacional de Córdoba, ARG.
Dörr, H., L. Katruff, and I. Levin. 1993. Soil texture parameterization of the methane uptake in aerated soils. Chemosphere 26:697-713. doi:10.1016/0045-6535(93)90454-d
Dunfield, P.F. 2007. The soil methane sink. In: D.S. Reay et al., editors, Greenhouse gas sinks. CABI, Wallingford, USA, and Cambridge, GBR. p. 152-170.
Fang, H., S. Cheng, G. Yu, J. Cooch, Y. Wang, M. Xu, and Y. Li. 2014. Low-level nitrogen deposition significantly inhibits methane uptake from an alpine meadow soil on the Qinghai-Tibetan Plateau. Geoderma 213:444-452. doi:10.1016/j.geoderma.2013.08.006
FAO. 2018. Soluciones ganaderas para el cambio climático. FAO, Roma, ITA.
Ferreira, O. 2008. Flujos de gases de efecto invernadero, potencial de calentamiento global y evaluación de emergía del sistema agroforestal Quesungual en el sur de Lempira, Honduras. Tesis MSc., Universidad Nacional de Colombia, Palmira, COL.
Fujikawa, T., and T. Miyazaki. 2005. Effects of bulk density and soil type on the gas diffusion coefficient in repacked and undisturbed soils. Soil Sci. 170:892-901. doi:10.1097/01.ss.0000196771.53574.79
Gebert, J., A. Groengroeft, and E. Pfeiffer. 2011. Relevance of soil physical properties for the microbial oxidation of methane in landfill covers. Soil Biol. Biochem. 43:1759-1767. doi:10.1016/j.soilbio.2010.07.004
Guzmán, D., J.F. Ruiz, y M. Cadena. 2014. Regionalización de Colombia según la estacionalidad de la precipitación media mensual, a través análisis de componentes principales (ACP). Informe Técnico. IDEAM, Bogotá D.C., COL.
Hansen, S., J.E. Mæhlum, and L.R. Bakken. 1993. N2O and CH4 fluxes in soil influenced by fertilization and tractor traffic. Soil Biol. Biochem. 25:621-630. doi:10.1016/0038-0717(93)90202-m
Hao, W.M., D. Scharffe, P.J. Crutzen, and E. Sanhueza. 1988. Production of N2O, CH4, and CO2 from soils in the tropical savanna during the dry season. J. Atmos. Chem. 7:93-105. doi:10.1007/bf00048256
Hernández-Medrano, J.H., y L. Corona. 2018. El metano y la ganadería bovina en México: ¿Parte de la solución y no del problema? Agroproductividad 11(2):46-51.
Holdridge, L.R. 2000. Ecología basada en zonas de vida. Quinta reimpresión. IICA, San José, CRI.
Hou, A.X., G.X. Chen, Z.P. Wang, O. Van-Cleemput, and W.H. Patrick. 2000. Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes. Soil Sci. Soc. Am. J. 64:2180-2186. doi:10.2136/sssaj2000.6462180x
Hristov, A.N., J. Oh, C. Lee, R. Meinen, F. Montes, T. Ott, J. Firkins, A. Rotz, C. Dell, A. Adesogan, W. Yang, J. Tricarico, E. Kebreab, G. Waghorn, J. Dijkstra and S. Oosting. 2013. Mitigation of greenhouse gas emissions in livestock production – A review of technical options for non-CO2 emissions. FAO Animal Production and Health Paper No. 177. FAO, Rome, ITA.
IGAC (Instituto Geográfico Agustín Codazzi). 2006. Métodos analíticos del laboratorio de suelos. 6a ed. Imprenta Nacional de Colombia, Bogotá, COL.
Kammann, C., L. Grünhage, H.J. Jäger, and G. Wachinger. 2001. Methane fluxes from differentially managed grassland study plots: the important role of CH4 oxidation in grassland with a high potential for CH4 production. Environ. Poll. 115:261-273. doi:10.1016/s0269-7491(01)00103-8
Kähkönen, M.A., C. Wittmann, H. Ilvesniemi, C.J. Westman, and M. Salkinoja-Salonen. 2002. Mineralization of detritus and oxidation of methane in acid boreal coniferous forest soils: seasonal and vertical distribution and effects of clear-cut. Soil Biol. Biochem. 34:1191-1200. doi:10.1016/s0038-0717(02)00056-1
Klemedtsson, A.K., and L. Klemedtsson. 1997. Methane uptake in Swedish forest soil in relation to liming and extra N-deposition. Biol. Fert. Soils 25:296-301. doi:10.1007/s003740050318
Lassey, K.R. 2008. Livestock methane emission and its perspective in the global methane cycle. Aust. J. Exp. Agr. 48:114-118. doi:10.1071/ea07220
Lê, S., J.J, and F. Husson. 2008. FactoMineR: A Package for Multivariate Analysis. J. Stat. Softw. 25(1):1-18. doi:10.18637/jss.v025.i01
Lee, S.W., J. Im, A.A. DiSpirito, L. Bodrossy, M.J. Barcelona, and J.D. Semrau. 2009. Effect of nutrient and selective inhibitor amendments on methane oxidation, nitrous oxide production, and key gene presence and expression in landfill cover soils: characterization of the role of methanotrophs, nitrifiers, and denitrifiers. Appl. Microbiol. Biotechnol. 85:389-403. doi:10.1007/s00253-009-2238-7
Li, X., H. He, W. Yuan, L. Li, W. Xu, W. Liu, and Z. Wang. 2018. Response of soil methane uptake to simulated nitrogen deposition and grazing management across three types of steppe in Inner Mongolia, China. Sci. Total Environ. 612:799-808. doi:10.1016/j.scitotenv.2017.08.236
Martínez-Atencia, J., J.C. Loaiza-Usuga, N.W. Osorio-Vega, G. Correa-Londoño, and M. Casamitjana-Causa. 2020. Leaf litter decomposition in diverse silvopastoral systems in a neotropical environment. J. Sustain. For. 2020:1723112. doi:10.1080/10549811.2020.1723112
Merino, A., P. Pérez-Batallón, y F. Macías. 2004. Influencia del uso y manejo agrícola sobre la dinámica de CH4 del suelo en el norte de España. Edafología 11(2):207-219.
Montenegro, J., y S. Abarca. 2000. Fijación de carbono, emisión de metano y de óxido nitroso en sistemas de producción bovina en Costa Rica. FAO, Roma, ITA. http://www.fao.org/3/x6366s10.htm (consultado 01 nov. 2018).
Mora, M.A., L. Ríos, L. Ríos, y J.L. Almario Charry. 2017. Impacto de la actividad ganadera sobre el suelo en Colombia. Ing. Región 17:1-12. doi:10.25054/22161325.1212
Murgueitio, E. 2011. Retos y progresos de la ganadería sostenible. Agric. Sosten. 7:45-54.
Murgueitio, E., e I. Muhammad. 2009. Ganadería y medio ambiente en América Latina En: E. Murgueitio et al., editores, Ganadería del futuro: Investigación para el desarrollo. 2ª ed. Fundación CIPAV, Cali, COL. p. 19-40.
Nanba, K., and G.M. King. 2000. Response of atmospheric methane consumption by maine forest soils to exogenous aluminum salts. Appl. Environ. Microbiol. 66:3674-3679. doi:10.1128/aem.66.9.3674-3679.2000
Pachauri, R.K., L.A. Meyer, y T. Stocker. (Ed.) 2014. IPCC 2014: Cambio climático 2014: Informe de síntesis. Contribución de los Grupos de Trabajo I. II y III al Quinto Informe de evaluación del panel intergubernamental sobre el cambio climático. IPCC, Ginebra, CHE.
Palm, C., H. Blanco-Canqui, F. DeClerck, L. Gatere, and P. Grace. 2014. Conservation agriculture and ecosystem services: An overview. Agric. Ecosyst. Environ. 187:87-105. doi:10.1016/j.agee.2013.10.010
Pereyra, V. 2009. Emisiones de metano y óxido nitroso en arrozales de la zona este del Uruguay: el manejo de cultivo como factor determinante. Repositorio Colibrí, Universidad de la República de Uruguay, Montevideo, URY. https://www.colibri.udelar.edu.uy/jspui/bitstream/20.500.12008/1456/1/uy24-14330.pdf (consultado 21 jun. 2019).
Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R Core Team. 2018. Nlme: linear and nonlinear mixed effects models. R package version 3.1-137. https://CRAN.R-project.org/package=nlme (accessed Jun. 21, 2019).
R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AUS.
Rondón, M. 2000. Land use and balances of greenhouse gases in Colombian Tropical savannas. Ph.D. Thesis. Cornell University, NY, USA.
Reay, D.S., A.K. Smith, and N.C. Hewitt. 2007. Methane: importance, sources and sinks. In: D.S. Reay et al., editors, Greenhouse gas sinks. CABI, Wallingford, WA, USA, and Cambridge, GBR. p. 143-151. doi:10.1079/9781845931896.0143
Ruser, R., R. Schilling, H. Steindl, H. Flessa, and F. Beese. 1998. Soil compaction and fertilization effects on nitrous oxide and methane fluxes in potato fields. Soil Sci. Soc. Am. J. 62:1587-1595. doi:10.2136/sssaj1998.03615995006200060016x
Sanhueza, E. 2007. Methane, soil-vegetation-atmosphere fluxes in tropical ecosystems. Interciencia 32(1):31-34.
Sanhueza, E., L. Cárdenas, L. Donoso, and M. Santana. 1994. Effect of plowing on CO2, CO, CH4, N2O, and NO fluxes from tropical savannah soils. J. Geophys. Res. 99:16429-16434. doi:10.1029/94jd00265
Sanhueza, E., and L. Donoso. 2006. Methane emission from tropical savannah Trachypogon sp. grasses. Atmos. Chem. Physics 6:5315-5319. doi:10.5194/acp-6-5315-2006
Scharffe, D., M. Hao, L. Donoso, J. Crutzen, and E. Sanhueza. 1990. Soil fluxes and atmospheric concentration of CO and CH4 in the northern part of the Guayana Shield, Venezuela. J. Geophys. Res. 95:22475-22480. doi:10.1029/jd095id13p22475
Sitaula, B.K., J.I.B. Sitaula, A. Aakra, and L.R. Bakken. 2001. Nitrification and methane oxidation in forest soil: acid deposition, nitrogen input and plant effects. Water Air Soil Poll. 130:1061-1066. doi:10.1007/978-94-007-0810-5_24
USDA. 2014. Claves para la taxonomía de suelos. 12a ed. USDA, WA, USA.
Thangarajan, R., N.S. Bolan, G. Tian, R. Naidu, and A. Kunhikrishnan. 2013. Role of organic amendment application on greenhouse gas emission from soil. Sci. Total Environ. 465:72-96. doi:10.1016/j.scitotenv.2013.01.031
US EPA (US Environmental Protection Agency). 2017. Inventory of US greenhouse gas emissions and sinks 1990-2015. EPA, USA. https://www.epa.gov/sites/production/files/2017-02/documents/2017_complete_report.pdf (accessed May 29, 2019).
Visscher, A., P. Boeckx, and O. Van-Cleemput. 2007. Artificial methane sinks. In: D.S. Reay et al., editors, Greenhouse gas sinks. CABI, Wallingford, WA, USA, and Cambridge, GBR. p. 184-200. doi:10.1079/9781845931896.0184
Yang, X., C. Wang, and K. Xu. 2017. Response of soil CH4 fluxes to stimulated nitrogen deposition in a temperate deciduous forest in northern China: A 5-year nitrogen addition experiment. Eur. J. Soil Biol. 82:43-49. doi:10.1016/j.ejsobi.2017.08.004
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).