Caracterización de compost a base de espinillo en relación a la Norma Chilena Nº2880.

Autores/as

  • Ricardo Tighe-Neira Universidad Católica de Temuco. Facultad de Recursos Naturales. Escuela de Agronomía, Chile.
  • Gina Leonelli-Cantergiani Universidad Católica de Temuco. Facultad de Recursos Naturales. Escuela de Agronomía, Chile.
  • René Montalba-Navarro Universidad de La Frontera, Chile.
  • Carolina Cavieres-Acuña Universidad Católica de Temuco. Facultad de Recursos Naturales. Escuela de Agronomía, Chile.
  • Daniza Morales-Ulloa Universidad Católica de Temuco. Facultad de Recursos Naturales. Escuela de Agronomía, Chile.

DOI:

https://doi.org/10.15517/am.v25i2.15442

Palabras clave:

Ulex europaeus, malezas, materia orgánica, compostaje.

Resumen

El objetivo de este estudio fue caracterizar el compost a base de espinillo (Ulex europaeus L.) y contrastar sus características físico-químicas con las de la Norma Chilena de compost (NCh 2880). El ensayo se montó en el Centro Experimental Pillanlelbún, Temuco, Chile, entre diciembre 2010 y abril de 2011. Se empleó un diseño factorial de 2×2, los factores fueron: mezcla y acelerador de compostaje (AC), ambos en dos niveles. Cuatro tratamientos: T1 U. europaeus (100%) sin AC, T2 U. europaeus (78%) + estiércol de bovino (22%) sin AC, T3 U. europaeus (100%) con AC y T4 U. europaeus (78%) + estiércol de bovino (22%) con AC. Se evaluó el contenido de materia orgánica (MO%), C orgánico total (%), relación C:N, N total (%), humedad (Hº%), tamaño partículas (TP%), toxicidad (% germinación de Raphanus sativus L.), pH, densidad aparente (DAP kg/m3), conductividad eléctrica (CE dS/m) y germinación de malezas (Nº de propágulos). Los tratamientos U. europaeus (100%) sin AC y con AC presentaron mayor %MO, %N total y relación C:N que T2 y T4. A la vez, U. europaeus (100%) sin AC, presentó un menor %C y T2 menor pH en comparación al resto de los tratamientos. Las demás variables evaluadas no presentaron diferencias significativas. Todas cumplieron con la NCh 2880, excepto toxicidad en el tratamiento con solo U. europaeus, y la CE en todos los tratamientos. Se debe reducir la CE para poder optar a su certificación por la NCh 2880.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Benito, M., A. Masaguer, A. Moliner, N. Arrigo, y R.S. Palma. 2003. Chemical and microbiological parameters for the characterization of the stabilizing and maturing of pruning waste compost. Biol. Fertil. Soils 37:184-189.

Bernai, M., C. Paredes, M. Sánchez-Monedero, y J. Cegarra. 1998. Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresource Technol. 63:91-99.

Boulter-Bitzer, J., J. Trevors, y G. Boland. 2006. A polyphasic approach for assessing maturity and stability in compost intended for suppression of plant pathogens. Appl. Soil Ecol. 34:65-81.

Brito, L., A. Amaro, I. Mourao, y J. Coutinho. 2010. Compostagem da fracção sólida do chorume com palha de azevém (Lolium multiflorum Lam.) ou tojo (Ulex europaeus L.). Rev. Ciências Agrarias 33(1):267-276.

Buitrago, L. 2013. Transformación de residuos vegetales de las especies invasoras Genista monspessulana y Ulex europaeus, en sustratos para incorporarlos en los procesos de propagación de material vegetal en el programa de restauración ecológica. Alcaldía Mayor de Bogotá D.C., Jardín Botánico José Celestino Mutis, Bogotá, Colombia.

Butler, T.A., L.J. Sikora, P.M. Teeinhilber, y L.W. Douglass. 2001. Compost age and sample storage effects on maturity indicators of biosolids compost. J. Environ. Qual. 30:2141-2148.

Chefetz, B., F. Adani, P. Genevini, F. Tambone, Y. Hadar, y Y. Chen. 1998. Humic-acid transformation during composting of municipal solid waste. J. Environ. Qual. 27:794-800.

Chefetz, B., P. Hatcher, Y. Hadar, y Y. Chen. 1996. Chemical and biologycal characterization of organic matter during composting of municipal solid waste. J. Environ. Qual. 25:776-785.

Clements, D.R., D.J. Peterson, y R. Prasad. 2001. The biology of Canadian weeds. 112. Ulex europaeus L. Can. J. Pl. Sci. 81:325-337.

Eneji, A.E., S. Yamamoto, T. Honna, y A. Ishiguro. 2001. Physicochemical changes in livestock feces during composting. Comm. Soil Sci. Plant. Anal. 32:477-489.

Francou, C., M. Poitrenaud, y S. Houot. 2005. Stabilization of organic matter during composting: influence of process and feedstocks. Compost Sci. Util. 13:72-83.

Gómez, J., R. Minhorst, y I. Piñeiro-Iglesias. 2009. Evaluación de diferentes sistemas de elaboración de sustratos de cultivo obtenidos a partir de tojo (Ulex europaeus L.). Span. J. Rural Dev. 1(0):2171-1216.

Goyal, S., S.K. Dhull, y K.K. Kapoor. 2005. Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresour. Technol. 96:1584-1591.

Guo, R., G. Li, T. Jiang, F. Schuchardt, T. Chen, Y. Zhao, e Y. Shen. 2012. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresource Technol. 112:171-178.

Howe, J.C., T.N. Barry, y A.I. Popay. 1988. Voluntary intake and digestion of gorse (Ulex europaeus) by goats and sheep. J. Agr. Sci. 111:107-114.

Iglesias, M., C. Rodil, S. Lamosa, y F. Díaz. 2009. Root development of Thuja plicata “atrovirens” in peat substitute rooting media. Sci Hort. 122:102-108.

Irshad, M., A.E. Eneji, Z. Hussain, y M. Ashraf. 2013. Chemical characterization of fresh and composted livestock manures. J. Plant Nutr. Soil Sci. 13:115-121.

IVM (Integrated Vegetation Management). 2000. Gorse. Noxious Weed IVM Guide. Technical Bulletin. http:// www.ipmaccess.com/Noxgorse.html (Consultado 12 feb. 2014).

Kabbashi, N. 2011. Sewage sludge composting simulation as carbon/nitrogen concentration change. J. Environ. Sci. 23:1925-1928.

Kuba, T., A. Tscholl, C. Partl, K. Meyer, y H. Insam. 2008. Wood ash admixture to organic wastes improves compost and its performance. Agr. Ecosyst. Environ. 127:43-49.

Lambert, M.G., G.A. Jung, H.W. Harpster, y J. Lee. 1989. Forage shrubs in North Island hill country 4: Chemical composition and conclusions. New Zeal. J. Agr. Res. 32:499-506.

Leal, N., y C. Madrid. 1998. Compostaje de residuos orgánicos mezclados con roca fosfórica. Agron. Trop. 48:335-357.

MacCarter, L.E., y D.L. Gaynor. 1980. Gorse: a subject for biological control in New Zealand. New Zeal. J. Exp. Agr. 8:321-330.

Manios, V.I., y A. Verdonck. 1985. Decomposition of vine-canes in heap and evaluation of the produced compost. Acta Hort. 172:39-46.

Matthei, O. 1995. Manual de las malezas que crecen en Chile. Alfabeta, Santiago, Chile.

Meeklah, A. 1979. Controlling gorse. New Zeal. J. Agr. 139:51-53.

NCh 2880 (Norma Chilena de Compost). 2004. Norma Chilena Oficial. Compost-Clasificación y requisitos. Instituto Nacional de Normalización (INN), Santiago, Chile.

O’Ryan, J. y M. Riffo. 2007. El compostaje y su utilización en agricultura. Fundación para la Innovación Agraria, Universidad de Las Américas. Santiago, Chile.

Pino, P., M. Varnero, y P. Alvardo. 2005. Dinámica del compostaje de residuos vitivinícolas con y sin incorporación de guano broiler. R.C. Suelo Nutr. Veg. 5(2):19-25.

Sadzawka, R., M. Carrasco, R. Grez, y M. De La Luz. 2005. Métodos de análisis de compost, según NCh 2880. Instituto de Investigaciones Agropecuarias, CRI La Platina, Santiago, Chile.

Sæbø, A., y F. Ferrini. 2006. The use of compost in urban green areas – A review for practical application. Urban For. Urban Gree. 4:159-169.

Sanabria-León, R., L. Cruz-Arroy, A. Rodríguez, y M. Alameda. 2007. Chemical and biological characterization of slaughterhouse wastes compost. Waste Manage. 27:1800-1807.

Sánchez, G., S. Galan, G. Mercado, y E. Olguín. 2001. Compostaje acelerado de pulpa de café proveniente de beneficios reconvertidos. http://www.smbb.com.mx/ congresos%20smbb/veracruz01/TRABAJOS/AREA_ VI/CVI-15.pdf. (Consultado 12 dic. 2012).

Schuchardt, F. 2005. Composting of organic waste. En: H.J. Jordening, y J. Winter, editores, Evironmental biotechnology. Concepts and applications. Wiley-VCH Verlag GmbH & Co. kGaA, Weinheim, Germany. p. 333-354.

Sullivan, D.M., y R.O. Miller. 2001. Compost quality attributes, measurements and variability. En: P.J. Stofella, y B.A. Kahn, editores, Compost utilization in horticultural cropping systems. CRC Press. Boca Raton, FL, USA. p. 95-120.

Tchegueni, S., M. Koriko, E. Koledzi, M. Bodjona, K. Kili, G. Tchangbedji, G. Baba, y M. Hafidi. 2013. Physicochemical characterization of organic matter during co-composting of shea-nut cake with goat manure. Afr. J. Biotechnol. 12:3466-3471.

Trois, C., y I. Polster. 2007. Effective pine bark composting with the Dome Aeration Technology. Waste Manage. 27:96-105.

Varnero, M., C. Rojas, y R. Orellana. 2007. Índices de fitotoxicidad en residuos orgánicos durante el compostaje. R.C. Suelo Nutr. Veg. 7(1):28-37.

Vogtmann, H., K, Fricke, y T. Turk. 1993. Quality, physical characteristics, nutrient content, heavy metals and organic chemicals in biogenic waste compost. Compost Sci. Util. 1:69-87.

Zbytniewski, R., y B. Buszewski. 2005. Characterization of natural organic matter (NOM) derived from sewage sludge compost. Part 1: chemical and spectroscopic propertie. Bioresource Technol. 96:471-478.

Zhao, S., X. Liu, y L. Duo. 2012. Physical and chemical characterization of municipal solid waste compost in different particle size fractions. Pol. J. Environ. Stud. 21:509-515.

Descargas

Publicado

2014-07-01

Cómo citar

Tighe-Neira, R., Leonelli-Cantergiani, G., Montalba-Navarro, R., Cavieres-Acuña, C., & Morales-Ulloa, D. (2014). Caracterización de compost a base de espinillo en relación a la Norma Chilena Nº2880. Agronomía Mesoamericana, 25(2), 347–355. https://doi.org/10.15517/am.v25i2.15442