Meta-análisis de los subproductos de piña (Ananas comosus) para la alimentación animal.

Autores/as

  • Michael López-Herrera Universidad de Costa Rica. Escuela de Zootecnia. Centro de Investigación en Nutrición Animal. San José, Costa Rica.
  • Rodolfo WingChing-Jones Universidad de Costa Rica. Escuela de Zootecnia. Centro de Investigación en Nutrición Animal. San José, Costa Rica.
  • Augusto Rojas-Baurrillón Universidad de Costa Rica. Escuela de Zootecnia. Centro de Investigación en Nutrición Animal. San José, Costa Rica.

DOI:

https://doi.org/10.15517/am.v25i2.15453

Palabras clave:

rumiantes, subproductos de piña, ensilaje, conservación de forrajes, alimentación animal.

Resumen

El objetivo del presente trabajo fue determinar el uso potencial de los sub-productos del cultivo de la piña para su empleo en la dieta de animales rumiantes. Se realizó una recopilación y análisis estadístico de la información obtenida de diferentes investigaciones realizadas hasta el año 2013 a nivel mundial, para la caracterización nutricional de la piña: planta entera, rastrojo (hojas, hijos y tallo), corona, corazón, cáscara y pulpa de la fruta, tallo y raíces, para optimizar su uso en la alimentación de animales rumiantes. Se comparó el efecto que tiene el manejo que se proporciona a los subproductos, siendo las variables de esta comparación, el proceso de ensilaje, el secado o el material fresco sin ningún tipo de aditivo. La composición nutricional de los materiales varió de acuerdo a la parte de la planta. Las raíces presentaron el mayor contenido de materia seca, fibra detergente neutro, fibra detergente ácido, lignina y cenizas. Mientras que las coronas y los rastrojos mostraron mayores contenidos de proteína cruda y energía, pero menor contenido de materia seca. Hubo una diferencia entre el proceso de deshidratado y el material fresco o ensilado, no así entre los materiales con alto contenido de humedad. Los subproductos obtenidos de los sistemas de producción de piña, tuvieron contenidos de energía y nutrimentos que permitirían su utilización como parte de la ración en la alimentación de rumiantes sin perjudicar su desempeño productivo.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdul-Kalil, H.P.S., M. Siti-Alwani, y A.K. Mohd-Omar. 2006. Chemical composition, anatomy, lignin distribution and cell wall structure of Malaysian plant waste fibers. BioResources 1:220-232.

Abdullah, B., y M. Hanafi. 2008. Caracterisation of solid and

liquid pineapple waste. Reaktor 12:48-52.

Adegbite O., O. Oni, y I. Adeoye. 2014. Competitiveness of pineapple production in Osun State, Nigeria. Journal of Economics and Sustainable Development 5(2):205-214.

AOAC (Association of Official Analytical Chemist). 1991. Methods of analysis. Washington D.C., USA.

Arroyo, C., y A. Rojas. s.f. Experiencias con ganado estabulado utilizando pejibaye (Bactris gasipaes) y frutas tropicales en Costa Rica. http://www.corfoga.org/images/public/documentos/pdf/experiencias_con_ganado_estabulado_ultilizando_pejibaye.pdf (Consultado 26 julio 2011).

Azevedo, J.A., S.C. Filho, E. Detmann, D. Pina, L.G. Pereira, K. De Oliveira, H. Fernandes, y N.K. Souza. 2011. Predição de frações digestíveis e valor energético de subprodutos agrícolas e agroindustriais para bovinos. R. Bras. Zootec. 40(2):391-402.

Banik, S., D. Nag, y S. Debnath. 2011. Utilization of pineapple leaf agro-waste for extraction of fibre and the residual biomass for vermicomposting. Indian J. Fibre Text. Res. 36:172-177.

Ban-Koffi, L., y Y.M. Han. 1990. Alcohol production from pineapple waste. World J. Microbiol. Biotechnol. 6:281-284.

Bardiya, N., D. Somayaji, y S. Khanna. 1996. Biomethanation of banana peel and pineapple waste. Bioresource Technol. 58:73-76.

Belyea, R., B. Steevens, G. Garner, J. Whittier, y H. Sewell, H. 1996. Using NDF and ADF to balance diets. Missoury University Extension: G3161. USA. http://extension.missouri.edu/p/G3161#ndf (Consultado 12 mayo 2013).

Botelho, L., A. Da Conceicão, y V. De Carvalho. 2002. Caracterização de fibras alimentares da casca e Cilindro central do abacaxi ‘smooth cayenne. Ciênc. Agrotec. 26:362-367.

Cheong, M.W. 2009. Supplementation of nitrogen sources and growth factors in pineapple waste extract medium for optimum yeast (Candida utilis) biomass production. Tesis de M. Sc., Universiti Sains Malaysia, Penang, Malaysia.

Cherian, B.M., A. Lopes, S. Ferreira, S. Thomas, L. Pothan, y M. Kottaisamyd. 2010. Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate Polymers 81:720-725.

Church, D.C., W.G. Pond, y K.R. Pond. 2003. Fundamentos de nutrición y alimentación de animales. Limusa Wiley, México D.F.

Cordenunsi, B., F. Saura-Calixto, M.E. Diaz-Rubio, A. Zuleta, M.A. Tiné, M. Silveira, G. Bezerra, C. Carpio, E. Bistriche, E. Wenzel, y F. Lajolo. 2010. Carbohydrate composition of ripe pineapple (cv. Perola) and the glycemic response in humans. Ciência e Tecnologia de Alimentos 30:282-288.

Correia, M.X., R.G. Costa, J.H. Da Silva, F.F. De Carvalho, y A. De Medeiros. 2006. Utilização de resíduo agroindustrial de abacaxi desidratado em dietas para caprinos em crescimento: digestibilidade e desempenho. R. Bras. Zootec. 35:1822-1828.

Cunha, M.D.G., E. Oliveira, J.L. Ramos, M.D. De Alcântara. 2009. Conservação e utilização do resíduo de abacaxi na alimentação de ovinos no curimataú ocidental da paraíba. R. Tecnol. & Ciên. Agropec. 3(3):55-62.

Da Costa J.M.C., É.M. de Freitas, G.A. Maia, I.M. Brasil, y F.F.H. Hernandez. 2007. Comparação dos parâmetros físico-químicos e químicos de pós alimentícios obtidos de resíduos de abacaxi. Revista Ciência Agronômica 38(2):228-232.

Deschatelets, L., y K.C. Yu. 1986. A simple pentose assay for biomass conversion studies. Appl. Microbiol. Biot. 24:379-385.

Detmann E., y S.C. Filho. 2010. Sobre a estimação de carboidratos não fibrosos em alimentos e dietas. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 62(4):980-984.

Dhanasekaran, D., S. Lawanya, S. Saha, N. Thajuddin, y A. Panneerselvam. 2011. Production of single cell protein from pineapple waste using yeast. Innovat. Rom. Food Biotechnol. 8:26-32.

Gutiérrez, F., A. Rojas, H. Dormond, M. Poore, y R. WingChing. 2003. Características nutricionales y fermentativas de mezclas ensiladas de desechos de piña y avícolas. Agron. Costarricense 27(1):79-89.

Hernández, M. 2008. Elaboración y caracterización del papel artesanal de la corona del fruto de dos variedades de piña (Ananas comosus (l.) Merr.). Tesis de Licenciatura, Universidad Autónoma de Chapingo, Texcoco, México.

Hoffman, P. 2005. Ash content of forages. College of Agricultural & Life Sciences. University of Winsconsin. USA. Focus on forages 7(1):1-2.

Jetana, T., W. Suthikrai, S. Usawang, C. Vongpipatana, S. Sophon, y J.B. Liang. 2009. The effects of concentrate added to pineapple (Ananas comosus Linn. Mer.) Waste silage in differing ratios to form complete diets, on digestion, excretion of urinary purine derivatives and blood metabolites in growing, male, thai swamp buffaloes. Trop. Anim. Health Prod. 41:449-459.

Jung, H.G., y K.P. Vogel. 1986. Influence of lignin on digestibility of forage cell wall material. J. Anim. Sci. 62:1703-1712.

Junior, J.E., J. Neiva, N. Rodríguez, J.C. Pimentel, y R. Lôbo.

Consumo e digestibilidade de subprodutos do processamento de frutas em ovinos. R. Bras. Zootec. 34:659-669.

Junior, J.E., J.M. Da Costa, J.N. Neiva, y N.M. Rodriguez. 2006. Caracterização físico-química de subprodutos obtidos do processamento de frutas tropicais visando seu aproveitamento na alimentação animal. R. Ciênc. Agron. 37(1):70-76.

Kellems, R.O., O. Wayman, A.H. Nguyen, J.C. Nolan, C.M.

Campbell, J.R. Carpenter, y E.B. Ho-a. 1979. Postharvest pineapple plant forage as a potential Feedstuff for beef cattle: evaluated by laboratory analyses, in vitro and in vivo digestibility and Feedlot trials. J. Anim. Sci. 48:1040-1048.

Kim, K.W., B.H. Lee, H.J. Kim, K. Sriroth, y J.R. Dorgan. 2011. Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites. J. Therm. Anal. Calorim. 108:1131-1139.

Lallo, F.H., I. Nunes, W. Goncalves, L.M. Zeoula, F. Barros, y F. Yoshimi. 2003. Níveis de substitução da silagem de milho pela silagem de resíduos industriais de abacaxisobre a degradabilidade ruminal em bovinos de corte. R. Bras. Zootec. 32:719-726.

López, M. 2008. Valoración nutricional de los rastrojos de piña (Ananas comosus) como alternativa forrajera de bajo costo para la alimentación del ganado. Tesis de licenciatura, Universidad de Costa Rica, Costa Rica.

López, M., R. WingChing-Jones, y A. Rojas. 2009. Características fermentativas y nutricionales del ensilaje de rastrojo de piña (Ananas comosus). Agron. Costarricense 33(1):1-15.

Mainoo, O.K., S. Barrington, J.K. Whalen, y L. Sampedro. 2009. Pilot-scale vermicomposting of pineapple wastes with earthworms native to Accra, Ghana. Bioresource Technol. 100:5872-5875.

McDonald, P. 1981. The biochemistry of silage. Wiley, New York, USA.

Mertens, D. 2011. Measurements of forage quality. En: M. Eastridge, editor, Proceedings of the Tri-State Dairy Nutrition Conference. Purdue University, Michigan State University, Ohio State University. April 19 – 20. Fort Wayne, Indiana, United States. p. 149-160.

Mokhtar, M, A.R. Rahmat, y A. Hassan. 2007. Characterization and treatments of pineapple leaf fibre thermoplastic composite for construction application. Tesis de Licenciatura, Universiti Teknologi Malaysia, Malasia.

Motta, C., P.A. Suttini, J.P. Fazanha, y A.F. Bergamaschine. 2002. Potencial produtivo e econômico da cultura do abacaxi e o aproveitamento de seus subprodutos na alimentação animal. Ciên. Agr. Saúde FEA 2(1):79-82.

Mwaikambo, L.Y. 2006. Review of the history, properties and application of plant fibres. African J. Sci. Technol. (AJST) Science and Engineering Series 7(2):120-33.

Negesse, T., H.P.S. Makkar, y K. Becker. 2009. Nutritive value of some non-conventional feed resources of Ethiopia determined by chemical analyses and an in vitro gas method. Animal Feed Sci. Technol. 154:204-217.

NRC (National Research Council). 2001. Nutrient requirements of dairy cattle. 7 ed. National Academy Press, Washington DC., USA.

Oliveira, N.T.E., J.B. Fonseca, R.T.R.N. Soares, C.T. Lombardi, y M.B. Mercadante. 2007. Determinação da energia metabolizável de diferentes alimentos testados em codornas japonesas fêmeas. Arq. Bras. Med. Vet. Zootec. 59:210-217.

Otagaki, K., P. Lofgreeng, E. Cobb, y G. Dull. 1961. Net energy of pineapple bran and pineapple hay when fed to lactating dairy cows. J. Dairy Sci. 44:491-497.

Pereira, E.S., J.G. Filho, E.R. Freitas, J.N. Neiva, y M.J. Cândido. 2009. Valor energético de subprodutos da agroindústria brasileira. Arch. Zootec. 58:455-458.

Pompeu, R.C., J.N. Neiva, M.J. Cândido, G. Filho, D. De Aquino, y R. Lobo. 2006. Valor nutritivo de silagens de capim-elefante (Pennisetum purpureum Schum.) com adição de subprodutos do processamento de frutas tropicais. Rev. Ciênc. Agron. 37:77-83.

Prado, I., F.H. Lallo, L.M. Zeoula, S.F. Caldas, W.G. Do Nascimento, y J. Marques. 2003. Níveis de substituição da silagem de milho pela silagem de resíduo industrial de abacaxi sobre o desempenho de bovinos confinados. R. Bras. Zootec. 32:737-744.

Quesada-Solís, K., P. Alvarado-Aguilar, R. Sibaja- Ballestero, y J. Vega-Baudrit. 2005. Utilización de las fibras del rastrojo de piña (Ananas comusus, variedad champaka) como material de refuerzo en resinas de poliéster. Rev. Iber. Polímeros 6:157-179.

Rani, D.S., y K. Nand. 2004. Ensilage of pineapple processing waste for methane generation. Waste Management 24: 523-528.

Rebolledo, A., A.I. Pérez, I. Rebolledo, y A.E. Becerril. 2006. Rendimiento y calidad de fruto de cultivares de piña en densidades de plantación. Rev. Fitotec. Mex. 29:55-62.

Riethmuller, P., J. Chai, D. Smith, B. Hutabarat, B. Sayaka, y Y. Yusdja. 1999. The mixing ratio in the Indonesian dairy industry. Agricultural Economics 20:51-56.

Rodríguez, S. 2010. Mejoramiento de la calidad nutricional de rastrojos de piña (Ananas comosus), con niveles crecientes de urea y minelaza. Tesis de licenciatura, Universidad de Costa Rica, San José, Costa Rica.

Rogério, M.C.P., I. Borges, J.N.M. Neiva, N.M. Rodríguez, J.C.M. Pimentel, G.A. Martins, T.P. Ribeiro, J.B. Costa, S.F. Santos, y F.C. Carvalho. 2007. Valor nutritivo do resíduo da indústria processadora de abacaxi (Ananas comosus) em dietas para ovinos. 1. Consumo, digestibilidade aparente e balanços energético e nitrogenado. Arq. Bras. Med. Vet. Zootec. 59:773-781.

Salazar, S. 2007. Disponibilidad de biomasa y valor nutricional del pasto estrella africana (Cynodon nlemfuensis) en el distrito de Quesada, cantón de San Carlos. Tesis de Licenciatura, Universidad de Costa Rica, San José, Costa Rica.

Salmones, D., K.N. Waliszewskiz, y G. Guzmán. 1996. Use of some agro-industrial lignocellulose by-products for edible mushroom Volvariella volvacea cultivation. Rev. Int. Contam. Amb. 12(2):69-74.

Sánchez, J. 2010. Práctica en el Programa de Transferencia Tecnológica de la Cooperativa de Productores de Leche Dos Pinos R.L. Ciudad Quesada, San Carlos. Práctica de Bachillerato, Escuela de Zootecnia, Universidad de Costa Rica, Costa Rica.

Sánchez, J.M., y H. Soto. 1998. Estimación de la calidad nutricional de los forrajes del cantón de San Carlos. II. Componentes de la pared celular. Revista Nutrición Animal Tropical 4(1):7-19.

Sánchez, J.M., y H. Soto. 1999. Estimación de la calidad nutricional de los forrajes del cantón de San Carlos. III Energía para la producción de leche. Revista de Nutrición Animal Tropical 5(1):31-49.

Siebeneichler, S.C., P.E. Monnerat, A.J.C. De Carvalho, y J.A. Da Silva. 2002. Composição mineral da folha em abacaxizeiro: Efeito da parte da folha analisada. Rev. Bras. Frutic. 24:194-198.

Sousa, B.A., y R.T. Correia. 2010. Biotechnological reuse of fruit residues as a rational strategy for agro-industrial resources. J. Technol. Manag. Innov. 5(2):104-112.

Sruamsiri, S., P. Silman, y W. Srinuch. 2007. Agro-industrial by-products as roughage source for beef cattle: Chemical composition, nutrient digestibility and energy values of ensiled sweet corn cob and husk with different levels of ipil – ipil leaves. Maejo Int. J. Sci. Technol. 1:88-94.

TAPP (Tanzania Agriculture Productivity Program). 2013. Market trends for pineapple. Market survey. USDA, Tanzania, Africa. http://www.fintrac.com/cpanelx_ pu/tapp/13_41_99_TAPP%20-%20Pineapple%20 Market%20Survey.pdf (Consultado 15 mayo 2014).

Tejeda, L., C. Tejada, A. Villabona, M. Alvear, C. Castillo, D. Henao, W. Marimón, N. Madariaga, y A. Tarón. 2010. Producción de bioetanol a partir de la fermentación alcohólica de jarabes glucosados derivados de cáscaras de naranja y piña. Revista Educación en Ingeniería 10:120-125.

Van Eys, J.E., L.M. Rangkuti, y W.L. Johson. 1989. Feed resources and feeding systems for small ruminants in South and Southeast Asia. En: C. Devendra, editor, Small ruminant production systems in South and Southeast Asia. Proceedings of a workshop held in Bogor, Indonesia. p. 52-77.

Van Soest, P.J., y J.B. Robertson. 1985. Analysis of forages and fibrous food. AS 613. Cornell University, A Laboratory Manual. Deparment of Animal Science. Ithaca, NY, USA.

Updegraft, D.M. 1969. Semi-micro determination of cellulose in biological materials. Anal. Biochem. 32:420-425.

Weiss, W.P. 2004. Fine-tuning energy calculations. En: M. Eastridge, editor, Proceedings of the Tri-State Dairy Nutrition Conference. Purdue University, Michigan State University, Ohio State University. April 27 – 28. Fort Wayne, Indiana, United States. p. 131-142.

Descargas

Publicado

2014-07-01

Cómo citar

López-Herrera, M., WingChing-Jones, R., & Rojas-Baurrillón, A. (2014). Meta-análisis de los subproductos de piña (Ananas comosus) para la alimentación animal. Agronomía Mesoamericana, 25(2), 383–392. https://doi.org/10.15517/am.v25i2.15453