Pigmentos fotosintéticos y conductancia estomática en ecotipos de copoazú (Theobroma grandi orum Willd. Ex. Spreng K. Schum.).
DOI:
https://doi.org/10.15517/am.v28i1.20814Palabras clave:
diversidad fenotípica, respuesta fisiológica, condiciones ambientales.Resumen
El objetivo del presente trabajo fue evaluar la variabilidad del contenido de pigmentos fotosintéticos y la conductancia estomática diaria en relación con las variables ambientales en ecotipos de copoazú (Theobroma grandi orum). Los ecotipos utilizados formaban parte del banco de germoplasma de la Universidad de la Amazonia (Colombia). El estudio se realizó durante el año 2015. Se colectaron cuatro hojas del estrato medio de cuatro plantas por cada ecotipo, para hacer extracción y lecturas a diferentes niveles de absorbancia para determinar el contenido de pigmentos fotosintéticos. Durante las 04:00 a 18:00 h se monitoreó la conductancia estomática (gs) respecto a variables ambientales (humedad relativa, temperatura del aire, radiación y déficit de presión de vapor (DPV). Se hizo un análisis de varianza utilizando la prueba de Tukey, se realizaron correlaciones y regresiones entre gs y variables ambientales. Los contenidos de cloro la a, b, total y carotenoides entre ecotipos fueron diferentes (P<0,0001), el ecotipo UA-31 presentó los mayores valores, contrastando con el ecotipo UA-37. A nivel de gs, la interacción ecotipo*hora presentaron diferencias significativas (P<0,0001). En promedio los ecotipos que presentaron mayores valores de gs fueron UA-67 y UA-039, esta variable presentó correlación negativa con temperatura (-0,84; P<0,0001), radiación (-0,91; P<0,0001) y DPV (-0,94; P<0,0001) contrario a lo presentado para humedad (0,90; P<0,0001). Los resultados sugieren que los ecotipos UA-039 y UA-31 fueron los más adecuados en cuanto al intercambio gaseoso y contenido de pigmentos fotosintéticos.
Descargas
Citas
Allen, R.G., L.S, Pereira, D. Raes, y M. Smith. 2006. Evapotranspiración del cultivo: guías para determinación los requerimientos de agua de los cultivos. FAO, Roma, ITA.
Almeida, A.A., F.P. Gomes, R.P. Araujo, R.C. Santos, and R.R. Valle. 2014. Leaf gas exchange in species of the Theobroma genus. Photosynthetica 52:16-21.
Alves, R.M., A.M. Sebbenn, A.S. Artero, C. Clement, and A. Figueira. 2007. High levels of genetic divergence and inbreeding in populations of cupuassu (Theobroma grandi orum). Tree Genet. Gen. 3:289-298.
Baker, N.R. 2008. Chlorophyll uorescence: a probe of photosynthesis in vivo. Ann. Rev. Plant. Biol. 59:89-113.
Baligar, V.C., J.A. Bunce, C.R. Machado, and M.K. Elson. 2008. Photosynthetic photon ux density, carbon dioxide concentration, and vapor pressure de cit effects on photosynthesis in cacao seedlings. Photosynthetica 46:216-221.
Balasimha, D., E.V. Daniel, and P.G. Bhat. 1991. In uence of environmental factors on photosynthesis in cocoa trees. Agr. Forest Metereol. 55:15-21.
Barrera, J., N. Orjuela, L.M. Melgarejo, D. Caicedo, y M.S. Hernández. 2009. Efecto de de ciencias minerales y de la luz en arazá (Eugenia stipitata) y copoazú (Theobroma grandi orum). En: M.S. Hernández, y J. Barrera, editores, Frutas amazónicas: competitividad e innovación. Editorial Instituto Amazónico de Investiga- ciones Cientí cas Sinchi, Bogotá, COL. p. 11-34.
Bertolde, F.Z., A.A. Almeida, C.P. Pirovani, F.P. Gomes, D. Ahnert, V.C. Baligar, and R.R. Valle. 2012. Physiological and biochemical responses of Theobroma cacao L. genotypes to ooding. Photosynthetica 50:447-457.
Bobich, E.G., G.A. Barron-Gafford, K.G. Rascher, and R. Murthy. 2010. Effects of drought and changes in vapour pressure de cit on water relations of Populus deltoides growing in ambient and elevated CO2. Tree Physiol. 30:866-875.
Caplan, J.S., and J.A. Yeakley. 2010. Water relations advantages for invasive Rubus armeniacus over two native ruderal congeners. Plant Ecol. 210:169-179.
Daymond, A.J., and P. Hadley. 2004. The effects of temperature and light integral on early vegetative growth and chlorophyll uorescence of four contrasting genotypes of cacao (Theobroma cacao). Ann. Appl. Biol. 145:257-262.
Daymond, A.J., P.J. Tricker, and P. Hadley. 2011. Genotypic variation in photosynthesis in cacao is correlated with stomatal conductance and leaf nitrogen. Biol. Plant. 55:99-104.
Di Rienzo, J.A., F. Casanoves, M.G. Balzarini, L. González, M. Tablada, y C.W. Robledo. 2015. Infostat versión 2015. Universidad Nacional de Córdoba, ARG.
Doheny-Adams, T., L. Hunt, P.J. Franks, D.J. Beerling, and J.E. Gray. 2012. Genetic manipulation of stomatal density in uences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philos Trans. R. Soc. Lond. B Biol. Sci. 367:547-555.
Dow, G.J., and D.C. Bergmann. 2014. Patterning and processes: how stomatal development de nes physiological potential. Current Opinion Plant Biol. 21:67-74.
Easlon, H., K. Nemali, J. Richards, D. Hanson, T. Juenger, and J. McKay. 2014. The physiological basis for genetic variation in water use ef ciency and carbon isotope composition in Arabidopsis thaliana. Photosynth. Res. 119:119-129.
Fortes, D., R.S. Herrera, S. Gonzales, M. García, A. Romero, y A.M. Cruz. 2010. Comportamiento de los pigmentos fotosintéticos, según la edad de rebrote después del pastoreo de Pennisetum purpureum vc. Cuba CT- 115 en la estación lluviosa. Rev. Cub. Cienc. Agríc. 44:427-431.
García, X., E. García, Q. Rascón, L. Herrera, and G.A. Aguado. 2005. Chlorophyll accumulation is enhanced by osmotic stress in graminaceous chlorophyllic cells. J. Plant Physiol. 162:650-667.
Genovese, M.I., and S.C.D.S. Lannes. 2009. Comparison of total phenolic content and antiradical capacity of powders and “chocolates” from cocoa and cupuassu. Food Sci. Technol. (Campinas) 29:810-814.
Gilbert, M.E., N.M. Holbrook, M.A. Zwieniecki, W. Sadok, and T.R. Sinclair. 2011. Field con rmation of genetic variation in soybean transpiration response to vapor pressure de cit and photosynthetic compensation. Field Crops Res. 124:85-92.
Huang, X.D., Y.E. Alawi, D.M. Penrose, B.R. Glick, and B.M. Greenberg. 2004. Responses of three grass species to creosote during phytoremediation. Environ. Poll. 130:453-459.
Jaimez, R.E., W. Tezara, I.L. Coronel, y R. Urich. 2008. Eco siología del cacao (Theobroma cacao): su manejo en el sistema agroforestal. Sugerencias para su mejoramiento en Venezuela. Rev. Forest. Venez. 52:253-258.
Joly, R.J., and D.T. Hahn. 1989. Net CO2 assimilation of cacao seedlings during periods of plant water de cit. Photosynth. Res. 21:151-159.
Lawlor, D.W. 2001. Photosynthesis. 3th ed. BIOS Sci. Publishers, Oxford, GBR.
Lichtenthaler, H.K. 1987. Chlorophylls and crotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148:350-382.
Lombardozzi, D., J.P. Sparks, G. Bonan, and S. Levis. 2012. Ozone exposure causes a decoupling of conductance and photosynthesis: implications for the Ball-Berry stomatal conductance model. Oecologia 169:651-659.
Maherali, H., M.E. Sherrard, M.H. Clifford, and R.G. Latta. 2008. Leaf hydraulic conductivity and photosynthesis are genetically correlated in an annual grass. New Phytol. 180:240-247.
Masle, J., S.R. Gilmore, and G.D. Farquhar. 2005. The ERECTA gene regulates plant transpiration ef ciency in Arabidopsis. Nature 436:866-870.
Matsumoto, K., T. Ohta, and T. Tanaka. 2005. Dependence of stomatal conductance on leaf chlorophyll concentration and meteorological variables. Agric. Forest Meteorol. 132:44-57.
Melgarejo, L.M., M. Romero, S. Hernández, J. Barrera, M.E. Solarte, D. Suárez, L.V. Pérez, A. Rojas, M. Cruz, A.L. Moreno, S.C. Crespo, y W.H. Pérez. 2010. Experimentos en siología vegetal. Universidad Nacional de Colombia, Bogotá, COL.
Naizaque, J., G. García, G. Fischer, y L.M. Melgarejo. 2014. Relación entre la densidad estomática, la transpiración y las condiciones ambientales en Feijoa (Acca sellowiana [o. Berg] Burret). Rev. U.D.C.A. Act. & Div. Cient. 17:115-121.
Ofori, A., F.K. Padi, K. Acheampong, and S. Lowor. 2015. Genetic variation and relationship of traits related to drought tolerance in cocoa (Theobroma cacao L.) under shade and no-shade conditions in Ghana. Euphytica 201:411-421.
Oren, R., J.S. Sperry, G.C. Katul, D.E. Pataki, B.E. Ewers, N. Phillips, and K.V.R. Schäfer. 1999. Survey and synthesis of intra and interspeci c variation in stomatal sensitivity to vapour pressure de cit. Plant Cell Environ. 22:1515-1526.
Pezeshki, S.R. 2001. Wetland plant responses to soil ooding. Environ. Exp. Bot. 46:299-312.
Sena-Gomes, A.R., T.T. Kozlowski, and P.B. Reich. 1987. Some physiological responses of Theobroma cacao var. Catongo seedlings to air humidity. New Phytol. 107:591-602.
Schützendübel, A., and A. Polle. 2002. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53:1351-1365.
Raja-Harun, R., and Hardwick, K. 1988. The effects of different temperature and water vapour pressure de cit on photosynthesis and transpiration in cocoa. In: Cocoa producers’ alliance, editor, Proceedings of the 10th International Cocoa Research Conference. Cocoa Producers’ Alliance, Lagos, NGR. p. 17-23.
Publicado
Cómo citar
Número
Sección
Licencia
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos morales de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución, no comercial y sin obra derivada de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista, no se puede hacer uso de la obra con propósitos comerciales y no se puede utilizar las publicaciones para remezclar, transformar o crear otra obra.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).