Potencial económico de la palma aceitera (Elaeis guineensis Jacq)

Autores/as

  • Juan Sierra Márquez Universidad de Cartagena, Facultad de Ciencias Farmacéuticas, Grupo de Química Ambiental y Computacional, Campus de Zaragocilla, Cartagena,
  • Lucellys Sierra Márquez Universidad de Cartagena, Facultad de Ciencias Farmacéuticas, Grupo de Química Ambiental y Computacional, Campus de Zaragocilla, Cartagena,
  • Jesus Olivero-Verbel Universidad de Cartagena

DOI:

https://doi.org/10.15517/ma.v28i2.25927

Palabras clave:

biocombustibles, gases de efecto invernadero, efluentes líquidos, Colombia.

Resumen

El objetivo de este trabajo fue destacar la importancia económica del aprovechamiento óptimo de los productos y subproductos de la palma aceitera. En Colombia este cultivo en etapa productiva puede generar anualmente en promedio 3,14 t de aceite, y hasta 21,68 t de residuos sólidos y líquidos por hectárea. Estos datos permiten estimar que para las 450 131 ha presentes en Colombia en 2014, se produjeron más de nueve millones de toneladas de residuos sólidos y líquidos; la biomasa fue empleada principalmente para la generación de energía y vapor, liberando el contenido de carbono nuevamente al ambiente. Estos residuos poseen un gran potencial en muchas industrias, algunas por desarrollar, por lo que, es de especial importancia intentar maximizar el uso de los residuos para generar beneficios económicos y ambientales. Ejemplo de ello es la torta de palmiste, con un potencial nutricional en la alimentación animal, la fibra en la industria de biocompuestos, la biomasa y el estípite en la industria maderera, el glicerol, el biodiesel y los efluentes líquidos en la industria química y biotecnológica. El aprovechamiento de estas materias primas puede ayudar a establecer un balance positivo en el cultivo de esta especie. 

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Jesus Olivero-Verbel, Universidad de Cartagena

Profesor

Citas

Aguilera-Díaz, M. 2002. Palma africana en la costa caribe: Un semillero de empresas solidarias. Docu. Trab. Econo. Regional 30:1-53.

Alengaram, U.J., B.A. Muhit, and M.Z. Jumaat. 2013. Utilization of oil palm kernel shell as lightweight aggregate in concrete – A review. Constr. Build Mater. 38:161-172.

Atif, A.A., A. Fakhru’l-Razi, M.A. Ngan, M. Morimoto, S.E. Iyuke, and N.T. Veziroglud. 2005. Fed batch production of hydrogen from palm oil mill effluent using anaerobic micro ora. Int. J. Hydrogen Energy 30:1393-1397.

Briceño, I., J. Valencia, y M. Posso. 2015. Potencial de generación de energía de la agroindustria de la palma de aceite en Colombia. Palmas 36(3):43-53.

Calle-Díaz, Z., y E. Murgueitio. 2008. La palma real de vino o corozo de puerco Attalea butyracea (Mutis ex L. f. Wess. Boer.) Arecaceae. Carta Fedegan. 107:46-56.

Cerveró, J., P. Skovgaard, C. Felby, H. Sørensen, and H. Jørgensen. 2010. Enzymatic hydrolysis and fermentation of palm kernel press cake for production of bioethanol. Enzyme Microbiol. Technol. 46:177-184.

Chatzifragkou, A., A. Makri, A. Belka, S. Bellou, M. Mavrou, M. Mastoridou, P. Mystrioti, G. Onjaro, G. Aggelis, and S. Papanikolaou. 2011. Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36:1097-1108.

Chee, K., H. Ling, and M. Ayob. 2012. Optimization of trypsin-assisted extraction, physico-chemical characterization, nutritional qualities and functionalities of palm kernel cake protein. Food Sci. Technol. 46:419-427.

Chong, H., P. Chia, and M. Ahmad. 2013. The adsorption of heavy metal by Bornean oil palm shell and its potential application as constructed wetland media. Bioresour. Technol. 130:181-186.

DANE (Departamento Administrativo Nacional de Estadística). 2016. Encuesta Nacional Agropecuaria ENA 2015. http://www. dane.gov.co/files/investigaciones/agropecuario/enda/ena/2015/boletin_ena_2015.pdf. (consultado 9 ago. 2016).

González, A., E. Girón, J. Ruiz, y F. Rincón. 2015. Principales cifras de la agroindustria de la palma de aceite en Colombia. Fedepalma - Unidad de Planeación Sectorial y Desarrollo Sostenible. http://web.fedepalma.org/sites/default/files/files/ Minianuario%20Estad%C3%ADstico%202015.pdf. (consultado 8 ago. 2016).

Harun, R., M. Singh, G. Forde, and M. Danquah. 2010. Bioprocess engineering of microalgae to produce a variety of consumer products. Renew. Sust. Energy Rev. 14:1037-1047.

Iluyemi, F., M. Hanafi, O. Radziah, and M. Kamarudin. 2006. Fungal solid state culture of palm kernel cake. Bioresour. Technol. 97:477-482.

Jeyarani, T., M. Imtiyaj-Khan, and S. Khatoon. 2009. Trans-free plastic shortenings from coconut stearin and palm stearin blends. Food Chem. 114:270-275.

Khan, S., Rashmi, M. Hussain, S. Prasad, and U. Banerjee. 2009. Prospects of biodiesel production from microalgae in India. Renew. Sust. Energy Rev. 13:2361-2372.

Kok, S., M. Ong-Abdullah, G.C. Ee, and P. Namasivayam. 2011. Comparison of nutrient composition in kernel of tenera and clonal materials of oil palm (Elaeis guineensis Jacq). Food Chem. 129:1343-1347.

Lam, M., and K. Lee. 2011. Renewable and sustainable bioenergies production from palm oil mill effluent (POME): Win–win strategies toward better environmental protection. Biotechnol. Adv. 29:124-141.

Lam, M., K. Tan, K. Lee, and A. Mohamed. 2009. Malaysian palm oil: Surviving the food versus fuel dispute for a sustainable future. Renew. Sust. Energy Rev. 13:1456-1464.

Lin, C., and C. Lay. 2004. Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Int. J. Hydrogen Energy 29:41-45.

Ma, F., and M. Hanna. 1999. Biodiesel production: a review. Bioresour. Technol. 70:1-15.

Mannan, M.A., J. Alexander, C. Ganapathy, and D.C. Teo. 2006. Quality improvement of oil palm shell (OPS) as coarse aggregate in lightweight concrete. Build. Environ. 41:1239-1242.

Mohamed, A., K. Lee, N. Noor, and N. Zainud. 2005. Oil palm ash/Ca(OH)2/CaSO4 absorbent for flue gas desulfurization. Chem. Eng. Technol. 28:939-945.

Mohammad, N., M.Z. Alam, N. Kabbashi, and A. Ahsan. 2012. Effective composting of oil palm industrial waste by filamentous fungi: A review. Resour. Conserv. Recy. 58:69-78.

Monde, A., F. Michel, M. Carbonneau, G. Tiahou, M. Vernet, S. Eymard-Duvernay, S. Badiou, B. Adon, E. Konan, D. Sess, and J. Cristol. 2009. Comparative study of fatty acid composition, vitamin E and carotenoid contents of palm oils from four varieties of oil palm from Côte d’Ivoire. J. Sci. Food Agr. 89:2535-2540.

Morimoto, M., M. Atsuko, A. Atif, M. Ngan, A. Fakhru’l-Razi, S. Iyuke, and A. Bakir. 2004. Biological production of hydrogen from glucose by natural anaerobic microflora. Int. J. Hydrogen Energy 29:709-713.

Ng, K., M. Ayob, M. Said, M. Osman, and A. Ismail. 2013. Optimization of enzymatic hydrolysis of palm kernel cake protein (PKCP) for producing hydrolysates with antiradical capacity. Ind. Crop. Prod. 43:725-731.

O-Thong, S., N. Intrasungkha, P. Prasertsan, S. Dhamwichukorn, and N. Birkeland. 2008. Optimization of simultaneous thermophilic fermentative hydrogen production and COD reduction from palm oil mill effluent by Thermoanaerobacterium- rich sludge. Int. J. Hydrogen Energy 33:1221-1231.

Otti, V.I., H.I. Ifeanyichukwu, F.C. Nwaorum, and F.U. Ogbuagu. 2014. Sustainable oil palm waste management in engineering development. Civil. Environ. Res. 6:121-125.

Paengkoum, P., J.B. Liang, Z.A Jelan, and M. Basery. 2006. Utilization of steam-treated oil palm fronds in growing goats: 1. supplementation with dietary urea. Asian-Aust. J. Anim. Sci. 19:1305-13.

Pagliaro, M., and M. Rossi. 2008. The future of glycerol: new usages for a versatile raw material. Royal Society of Chemistry Publishing, Cambridge, GBR.

Pantzaris, T., and A. Mohd-Jaaffar. 2002. Properties and utilization of palm kernel oil. Palmas 23:46-58.

Posada, J., and C. Cardona. 2010. Design and analysis of fuel ethanol production from raw glycerol. Energy 35:5286-5293.

Posada-Duque, J., y C. Cardona-Alzate. 2010. Análisis de la refinación de glicerina obtenida como coproducto en la producción de biodiesel. Ingeniería y Universidad 14:9-27.

Prasertsan, S., and P. Prasertsan. 1996. Biomass residues from palm oil mills in Thailand: an overview on quality and potential usage. Biomass Bioenergy 11:387-395.

Razuan, R., K. Finney, Q. Chen, V. Shari , and J. Swithenbank. 2011. Pelletised fuel production from palm kernel cake. Fuel Process. Technol. 92:609-615.

Reid, W., H.A. Mooney, A. Cropper, D. Capistrano, S. Carpenter, K. Chopra, P. Dasgupta, T. Dietz, A. Duraiappah, R. Hassan, R. Kasperson, R. Leemans, R. May, T. McMichael, P. Pingali, C. Samper, R. Scholes, R. Watson, A. Zakri, Z. Shidong, N. Ash, E. Bennett, P. Kumar, M. Lee, C. Raudsepp-Hearne, H. Simons, J. Thonell, y M. Zurek. 2001. Evaluación de los ecosistemas del milenio. http://www.unep.org/maweb/documents/document.439.aspx.pdf. (consultado 20 abr. 2014).

Reyes, S., y J. Ortíz. 2008. Aprovechamiento de los residuos de la palma africana. http://www.materiales-sam.org.ar/sitio/ biblioteca/CONAMET-SAM2008/pdfs/a9.pdf. (consultado 20 abr. 2014).

Rhule, S. 1996. Growth rate and carcass characteristics of pigs fed on diets containing palm kernel cake. Anim. Feed Sci. Tech. 61:167-172.

Rincón, S., y D. Martínez. 2009. Análisis de las propiedades del aceite de palma en el desarrollo de su industria. Palmas 30(2):1-14.

Rozman, H., M. Saad, and Z. Ishak. 2003. Flexural and impact properties of oil palm empty fruit bunch (EFB)–polypropylene composites-the effect of maleic anhydride chemical modi cation of EFB. Polym. Test. 22:335-341.

Sharma, Y., B. Singh, and S. Upadhyay. 2008. Advancements in development and characterization of biodiesel: A review. Fuel 87:2355-2373.

Shinoj, S., R. Visvanathan, S. Panigrahi, and M. Kochubabu. 2011. Oil palm fiber (OPF) and its composites: A review. Ind. Crop Prod. 33:7-22.

Shuit, S.H., K.T. Tan, K.T. Lee, and A.H. Kamaruddin. 2009. Oil palm biomass as a sustainable energy source: A Malaysian case study. Energy 34:1225-1235.

Singh, S., and D. Singh. 2010. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renew. Sust. Energy Rev. 14:200-216.

Singhabhandhu, A., and T. Tezuka. 2010. A perspective on incorporation of glycerin purification process in biodiesel plants using waste cooking oil as feedstock. Energy 35:2493-2504.

Sreekala, M., M. Kumaran, M. Geethakumariamma, and S. Thomas. 2004. Environmental effects in oil palm fiber reinforced phenol formaldehyde composites: Studies on thermal, biological, moisture and high energy radiation effects. Adv. Compos. Mater. 13:171-197.

Suhaily, S., M. Jawaid, H. Abdul-Khalil, A. Mohamed, and F. Ibrahim. 2012. A review of oil palm biocomposites for furniture design and applications: potential and challenges. BioResour. 7:4400-4423.

Sumathi, S., S. Chai, and A. Mohamed. 2008. Utilization of oil palm as a source of renewable energy in Malaysia. Renew. Sust. Energy Rev. 12:2404 -2421.

Szydłowska-Czerniak, A., K. Trokowski, G. Karlovits, and E. Szłyk. 2011. Effect of refining processes on antioxidant capacity, total contents of phenolics and carotenoids in palm oils. Food Chem. 129:1187-1192.

Tan, Y., M. Ayob, and W. Wan-Yaacob. 2013. Puri cation and characterization of antibacterial peptide-containing compound derived from palm kernel cake. Food Chem. 136:279-284.

Umar, M.S., P. Jennings, and T. Urmee. 2013 Strengthening the palm oil biomass renewable energy industry in Malaysia. Renew. Energ. 60:107-115.

Waskitoaji, W., E. Triwulandari, and A. Haryono. 2012. Synthesis of plasticizers derived from palm oil and their application in polyvinyl chloride. Procedia Chem. 4:313-321.

Wu, T.Y., A.W. Mohammad, J.M. Jahim, and N. Anuar. 2009. A holistic approach to managing palm oil mill effluent (POME): Biotechnological advances in the sustainable reuse of POME. Biotechnol. Adv. 27:40-52.

Yaakub, H., M. Masnindah, G. Shanthi, S. Sukardi, and A. Alimon. 2009. The effects of palm kernel cake based diet on spermatogenesis in Malin×Santa-Ines rams. Anim. Reprod. Sci. 115:182-188.

Yacob, S., M. Ali-Hassan, Y. Shirai, M. Wakisaka, and S. Subash. 2006. Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment. Sci. Tot. Environ. 366:187-196.

Yang, F., M. Hanna, and R. Sun. 2012. Value-added uses for crude glycerol-a byproduct of biodiesel production. Biotechnol. Biofuels 5(13):1-10.

Yazdani, S., and R. Gonzalez. 2007. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr. Opin. Biotechnol. 18:213-219.

Yusoff, S. 2006. Renewable energy from palm oil - innovation on effective utilization of waste. J. Clean Prod. 14:87-93.

Zulkifli, H., M. Halimah, K.W. Chan, Y.M. Choo, and W. Mohd-Basri. 2010. Life cycle assessment for oil palm fresh fruit bunch production from continued land use for oil palm planted on mineral soil (part 2). J. Oil Palm Res. 22:887-894.

Publicado

2017-04-30

Cómo citar

Sierra Márquez, J., Sierra Márquez, L., & Olivero-Verbel, J. (2017). Potencial económico de la palma aceitera (Elaeis guineensis Jacq). Agronomía Mesoamericana, 28(2), 523–534. https://doi.org/10.15517/ma.v28i2.25927

Número

Sección

Revisiones bibliográficas