Captura de carbono en la biomasa aérea de la palma de aceite en Chiapas, México

Autores/as

  • Rutver Aranda-Arguello Universidad Autónoma de Chiapas
  • Alejandro Ley-de-Coss Universidad Autónoma de Chiapas
  • Concepción Arce-Espino Universidad Autónoma de Chiapas
  • René Pinto-Ruiz Universidad Autónoma de Chiapas
  • Francisco Guevera-Hernández Universidad Autónoma de Chiapas
  • Deb Raj-Aryal Universidad Autónoma de Chiapas

DOI:

https://doi.org/10.15517/ma.v29i3.32076

Palabras clave:

cultivo agroindustrial, ecuación alométrica, impacto ambiental, acumulación de carbono, producción de aceite.

Resumen

Chiapas, México, ocupa el primer lugar en superficie y producción de palma de aceite, se puede considerar como alternativa de mitigación del cambio climático, por el potencial de los cultivos perennes para fijar en su biomasa el carbono (C) que se libera en forma de CO2 ambiental. El objetivo de este trabajo fue medir el carbono capturado en la fracción aérea de la planta de la palma de aceite (Elaeis guineensis Jacq.). El estudio se realizó de enero del 2016 a junio del 2017 en tres regiones productoras; donde a veintiún plantas de doce años en promedio se les determinó la biomasa del estípite mediante la técnica del cono truncado, mientras que, para las hojas se utilizó la equivalencia del 65% de la biomasa del estípite. Con estos datos se realizó una estadística descriptiva para conocer los valores de biomasa. La cantidad de C se determinó por el método de Walkley y Black modificado por espectrofotometría de UV. La biomasa acumulada por planta fue de 1877,30 kg, que representó 268,45 t/ha con una densidad promedio de 143 plantas/ha. El 49,35% y 44,15% fue carbono en estípite y hojas, respectivamente; por tanto, la cantidad de este elemento fue 877,64 kg de carbono por planta, que representó 125,5 t/ha. Se generó una ecuación alométrica que estima la biomasa a partir del volumen del estípite (y = 243,86 + 990,61x), así como para la cantidad de carbono a partir de la biomasa (y = 149,07 + 0,39x). Se determinaron dos modelos alométricos con los datos obtenidos del cultivo de palma de aceite, los cuales se sugiere sean evaluados en campo para determinar el grado de confiabilidad en la estimación de biomasa y el carbono almacenado bajo condiciones agroclimáticas similares a las del presente estudio.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Alejandro Ley-de-Coss, Universidad Autónoma de Chiapas

Profesor_investigador de la Facultad de Ciencias Agronomicas, Campus V de la Universidad Autónoma de Chiapas. Investigador Nacional Nivel 1 del Consejo Nacional de Ciencia y Tecnología (CONACYT).

Citas

Acosta, M.M., H.J. Vargas, M.A. Velásquez, y J.D. Etchevers. 2002. Estimación de la biomasa aérea mediante el uso de relaciones alométricas en seis especies arbóreas en Oaxaca, México. Agrociencia 36:725-736.

Adger, W., K. Brown, R. Cervigni, and D. Moran. 1995. Total economic value of forest in Mexico. Ambio 24:286-296.

Arrieche, I., D.M. Ruíz, C.E. Carrillo-de-Cori, R.M. León, L.M. Aular, R. Mora, L. Castillo, M.R. Tovar, A. Martínez, T. Díaz, H. Baptista, J. Cruz, A.M. Reverón, C. Silva, y N. Alfonzo. 2013. Unificación de criterios para la determinación de la materia orgánica del suelo. Estudio interlaboratorio. Venesuelos 21:33-42.

Avendaño, D.M., M.M. Acosta, A.F. Carrillo, y J.D. Etchevers. 2009. Estimación de biomasa y carbono en un bosque de Abies religiosa. Rev. Fitotec. Mex. 32:233-238.

Brown, S. 1997. Estimating biomass and biomass change of tropical forests: A Primer. A Forest Resources Assessment publication. FAO, Roma, ITA.

Carrillo, A.F., M.M. Acosta, A.E. Flores, J.E. Juárez, y P.E. Bonilla. 2014. Estimación de biomasa y carbono en dos especies arbóreas en la Sierra Nevada, México. Rev. Mex. Cienc. Agríc. 5:779-793.

Castilla, C.E. 2004. Potencial de captura de carbono por la palma de aceite en Colombia. Palmas 25(esp.):366-371.

Concha, J.Y., J.C. Alegre, y V. Pocomucha. 2007. Determinación de las reservas de carbono en la biomasa aérea de sistemas agroforestales de Theobroma cacao L. en el departamento de San Martín, Perú. Ecol. Applic. 6:75-82.

Corley, R.H. V., B.S. Gray, and S.K. Ng. 1971. Productivity of the oil palm (Elaeis guineensis Jacq.) in Malaysia. Exp. Agric. 7:129-136. doi:10.1017/S0014479700004907

De-Jong, B.H., O. Masera, y T. Hernández. 2004. Opciones de captura de carbono en el sector forestal. En: J. Martínez, y B. A. Fernández, editores, Cambio Climático: una visión desde México. SEMARNAT, e INE, MEX. p. 369-380.

Díaz, F.R., M.M. Acosta, A.F. Carrillo, R.E. Buendía, A.E. Flores, y J.D. Etchevers. 2007. Determinación de ecuaciones alométricas para estimar biomasa y carbono en Pinus patula Schl. et Cham. Madera y Bosque 13:25-34.

Green House Gas Protocol. 2011. Product life cycle accounting and reporting standard. World Resources Institute, WA, USA. http://ghgprotocol.org/sites/default/files/standards/Product-Life-Cycle-Accounting-Reporting-Standard-EReader_041613_0.pdf (accessed 15 Oct. 2017).

Henson, I.E. 1993. Carbon assimilation, water use and energy balance of an oil palm plantation assessed using micrometeorological techniques. In: J. Sukaimi et al., editors, Proceedings of PORIM International Palm Oil Congress ‘Update and References 100 and Vision’ - Agriculture Module. Palm Oil Research Institute of Malaysia, Kuala Lumpur, MAS. p. 137-158.

Henson, I.E. 1999. Comparative ecophysiology of oil palm and tropical rain forest. In: G. Singh et al., editors, Oil palm and the environment. Malaysian Oil Palm Growers’ Council, Kuala Lumpur, MAS. p. 9-39.

INEGI (Instituto Nacional de Estadística, Geografía e Informática). 2004a. Cartas de edafología. Escala 1:250 000. Chiapas, México. INEGI, MEX. http://www.inegi.org.mx/geo/contenidos/recnat/edafologia/cartaedafologica.aspx. (consultado 24 nov. 2017).

INEGI (Instituto Nacional de Estadística, Geografía e Informática). 2004b. Guía para la interpretación de cartografía edafología. INEGI, MEX. http://www.beta.inegi.org.mx/app/biblioteca/ficha.html?upc=702825231736. (consultado 24 nov. 2017).

IPCC (Grupo Intergubernamental de Expertos sobre el Cambio Climático). 2006. Directrices del IPCC de 2006 para los inventarios nacionales de gases de efecto invernadero. En: H.S. Eggleston et al., editores, Guía. Volumen 4. Agricultura, silvicultura y otros usos de la tierra. IGES, Hayama, JPN. http://www.ipcc-nggip.iges.or.jp/public/2006gl/spanish/vol4.html. (consultadol 24 nov. 2017).

IPCC (Grupo Intergubernamental de Expertos sobre el Cambio Climático). 2014. Cambio climático: Informe de síntesis. En: R.K. Pachauri, y L.A. Meyers, editores. Contribución de los grupos de trabajo I, II y III al quinto informe de evaluación del grupo intergubernamental de expertos sobre el cambio climático. IPCC, Ginebra, SUI, p.157.

Khalid, H., Z.Z. Zakaria, y J.M. Anderson. 2000. Cuantificación de la biomasa de la palma de aceite y su valor nutritivo en una plantación desarrollada: I. La biomasa encima del suelo. Palmas 21(1):67-77.

Leblanc, H., R. Russo, J.J. Cueva, y E. Subía. 2006. Fijación de carbono en palma aceitera en la región tropical húmeda de Costa Rica. Tierra Trop. 2:143-148.

Masera, O.R., M.R. Bellón, and G. Segura. 1995. Forest management options for sequestering carbon in Mexico. Bio. Bioener. 8:357-367. doi:10.1016/0961-9534(95)00028-3.

Ng, S.K., S. Thamboo, and P. De-Souza. 1968. Nutrient content on oil palm in Malaysia. II. Nutrient content in vegetative tissues. Malaysia Agri. J. 4: 332-391.

Pacheco, F.C., A. Aldrete, G.A. Gómez, A.M. Fierros, V.M. Cetina, y H.H. Vaquera. 2007. Almacenamiento de carbón en la biomasa aérea de una plantación joven de Pinus greggii Engelm. Rev. Fitotec. Mex. 30: 251-254.

Poh, H.M., W. Killmann, H.H. Wong, and M. Deraman. 1991. Press drying of oil palm trunks. In: K.C. Khoo et al., editors, Proceedings of the National Seminar of Oil Trunk and Other Palm Wood Utilization. FAO, Kuala Lumpur, MAS. p. 124-130.

Pulhin, F.B., R.D. Lascob, and J.P. Urquiolab. 2014. Carbon sequestration potential of oil palm in Bohol, Philippines. Ecosys. Develop. J. 4:14-19.

Rees, A.R., and P.B.H. Tinker. 1963. Dry matter production and nutrient content of plantation oil palms in Nigeria. Plant Soil. 19:350-363. doi:10.1007/BF01347859.

Rodríguez, M., R.L. Do, J.A. Dos-Santos, e E. Barcelos. 2000. Carbono e Nitrogênio na biomassa aérea de cultivo do dendê em Latossolo Amarelo na. Em: Embrapa Amazônia Ocidental, editores, Resumo do III Congresso brasileiro de sistemas agroflorestais: Manejando a biodiversidade e compondo a paisagem rural. Software Graphic Ltda., Manaus, Amazônia, BRA. p. 82-84.

Schlesinger, W.H. 1997. Biogeochemistry: an analysis of global change. Academic Press, San Diego, CA, USA.

SIAP (Servicio de Información Agroalimentaria y Pesquera). 2015. Estadística de la producción agrícola. SIAP, MEX. https://www.gob.mx/siap/acciones-y-programas/produccion-agricola-33119 (Consultado 24 nov. 2016).

Thenkabail, P.S., N. Stucky, B.W. Griscom, A.S. Aston, J. Diels, B. Van-Deer-Meer, and E. Enclona. 2004. Biomass estimation and carbon stock calculations in the oil palm plantations of African derived savannas using IKONOS data. Int. J. Remote Sens. 25:5447-5472. doi:10.1080/01431160412331291279.

Tiong, G.L., L.G. Tong, Y.T. Ngan, and H.C. Yee. 1991. Yield and utilization of oil palm trunk limber. In: K.C. Khoo et al., editors, Proceedings of the National Seminar of Oil Trunk and Other Palm Wood Utilization. FAO, Kuala Lumpur, MAS. p. 131-144.

Torres, J.M., y A. Guevara. 2002. El potencial de México para la producción de servicios ambientales: captura de carbono y desempeño hidráulico. Gaceta Ecol. 1:40-59.

Walkley, A., and A. Black. 1934. An examination of the Degtjoreff method for determination soil organic matter, and a proposed codification of the chromic acid titration method. Soil Sci.37:29-38. doi:10.1097/00010694-193401000-00003

Publicado

2018-09-01

Cómo citar

Aranda-Arguello, R., Ley-de-Coss, A., Arce-Espino, C., Pinto-Ruiz, R., Guevera-Hernández, F., & Raj-Aryal, D. (2018). Captura de carbono en la biomasa aérea de la palma de aceite en Chiapas, México. Agronomía Mesoamericana, 29(3), 629–637. https://doi.org/10.15517/ma.v29i3.32076

Artículos más leídos del mismo autor/a