Resistencia de cultivares de berenjena (Solanum melongena L.) a Tetranychus ludeni (Acari:Tetranychidae)
DOI:
https://doi.org/10.15517/am.v32i2.42079Palabras clave:
Caribe colombiano, ácaro rojo, cultivares regionales, resistencia de campoResumen
Introducción. La berenjena Solanum melongena L. (Solanales: Solanaceae), es uno de los cultivos de hortalizas más importantes del Caribe Colombiano. Cultivo afectado por el ácaro rojo Tetranychus ludeni (Acari:Tetranychidae) el cual causa pérdidas económicas asociadas al rendimiento y contaminación ambiental por sobredosificaciones de acaricidas, lo que repercute en la salud de los agricultores y su familia. Objetivo. Evaluar la resistencia de siete materiales de berenjena a infestaciones artificiales de T. ludeni en condiciones de campo e invernadero. Materiales y métodos. El estudio se desarrolló entre abril y octubre de 2017 en el Centro de Investigación Turipaná de la Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA). Los genotipos evaluados fueron las variedades Corpoica C029, Corpoica C015, las accesiones C036, C025, C049, y los cultivares regionales Buelvas y González; en campo e invernadero bajo un diseño en bloques completos al azar en tratamientos con cuatro repeticiones. Resultados. Las pruebas de campo mostraron diferencias significativas en la densidad poblacional de ácaros entre los materiales (F=4,42; p<0,0004), donde C025 tuvo los mayores valores y Buelvas los menores. La prueba de invernadero reveló diferencias en la densidad poblacional de ácaros entre materiales, con mayor población el cultivar C036 y con menor Buelvas. Conclusiones. Los cultivares regionales Buelvas y González exhibieron resistencia contra T. ludeni, proporcionando evidencia que existió resistencia a T. ludeni en campo en los materiales regionales de berenjena del Caribe colombiano. Las pruebas bajo invernadero, con las mayores densidades del ácaro, ofrecieron mayor poder discriminatorio y se sugieren en la fase inicial de evaluación completa del banco de germoplasma. Se sugiere el uso del cultivar Buelvas como genotipo resiste y C036 como genotipo de referencia susceptible a T. ludeni en futuros ensayos experimentales. Buelvas se recomienda como genotipo de referencia en razón de la estabilidad de la resistencia que mostró en campo e invernadero y asociada a mayores rendimientos.
Descargas
Citas
Adango, E., Onzo, A., Hanna, R., Atachi, P., & James, B. (2006). Comparative Demography of the Spider Mite, Tetranychus ludeni, on Two Host Plants in West Africa. Journal of Insect Science, 6(1), Article 49. https://doi.org/10.1673/031.006.4901
Alvarenga, M., Luan, S., Godano, M., Monteiro, B., Reis, T., Amato, R., & Monteiro, M. (2014). Injury of Tetranychus ludeni (Acari: Tetranychidae) on Physalis peruviana (Solanaceae) crops in Diamantina, Brazil. Revista Colombiana de Entomología, 40(2), 187–189. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-04882014000200010&lng=en&nrm=iso
Andreu, A. B., Caldiz, D. O., & Forbes, G. A. (2010). Phenotypic Expression of Resistance to Phytophthora infestans in Processing Potatoes in Argentina. American Journal of Potato Research, 87(2), 177–187. https://doi.org/10.1007/s12230-009-9121-z
Araméndiz, H. (2008). El cultivo de la berenjena (Solanum melongena L.). Universidad de Córdoba.
Arora, S., Bronkema, C., Porter, J. R., Mottrie, A., Dasgupta, P., Challacombe, B., Rha, K. H., Ahlawat, R. K., Capitanio, U., Yuvaraja, T. B., Rawal, S., Moon, D. A., Sivaraman, A., Maes, K. K., Porpiglia, F., Gautam, G., Turkeri, L., Bhandari, M., Jeong, W., … Abdollah, F. (2020). Omission of cortical renorrhaphy during robotic partial nephrectomy: a Vattikuti Collective Quality Initiative (VCQI) database analysis. Urology, 146, 125-132. https://doi.org/10.1016/j.urology.2020.09.003
Baker, E. W., & Tuttle, D. M. (1994). A guide to the spider mites (Tetranychidae) of the United States. Indira Publishing House.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5, Article 180214. https://doi.org/10.1038/sdata.2018.214
Blaazer, C. J. H., Villacis-Perez, E. A., Chafi, R., Van Leeuwen, T., Kant, M. R., & Schimmel, B. C. J. (2018). Why do herbivorous mites suppress plant defenses? Frontiers in Plant Science, 9, Article 1057. https://doi.org/10.3389/fpls.2018.01057
Blum, A. (1969). Oviposition preference by the sorghum shoot fly (Atherigona varia soccata) in progenies of susceptible × resistant sorghum crosses. Crop Science, 9(6), 695–696. https://doi.org/10.2135/cropsci1969.0011183X000900060005x
Bolland, H. R. (1998). World catalogue of the spider mite family: (acari: Tetranychidae). Brill.
Burbano-Figueroa, O., Sierra-Monroy, J. A., & David Hinestroza, A. (2020). Simulación probabilística de ingresos monetarios obtenidos en cultivos del sistema irrigado de producción de hortalizas del Valle del Sinú Colombia. AgriXiv. https://doi.org/10.31220/osf.io/tc694
Cadena, J., Gomez, G., Martínez, F., Ibañez, K., Castillo, O., Correa, E. M., & Aramendiz, H. (2011). Selección de cultivares competitivos de berenjena para los mercados nacionales y de exportación, con adaptación a las condiciones del Caribe colombiano. Corporación Colombiana de Investigación Agropecuaria.
Casañas, F., Simó, J., Casals, J., & Prohens, J. (2017). Toward an evolved concept of landrace. Frontiers in Plant Science, 8, Article 145. https://doi.org/10.3389/fpls.2017.00145
Cook, S. M., Smart, L. E., Martin, J. L., Murray, D. A., Watts, N. P., & Williams, I. H. (2006). Exploitation of host plant preferences in pest management strategies for oilseed rape (Brassica napus). Entomologia Experimentalis et Applicata, 119(3), 221–229. https://doi.org/10.1111/j.1570-7458.2006.00419.x
Di-Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2017). InfoStat versión 2017 (Version 2017) [Computer software]. Infostat Group, Universidad Nacional de Cordoba.
Food and Agriculture Organization. (2021). Producción/Rendimiento de Berenjenas en Mundo + (Total) 2019. http://www.fao.org/faostat/es/#data/QC/visualize
Gore, J., Cook, D., Catchot, A., Musser, F., Stewart, S., Leonard, R., Lorenz, G., Studebaker, G., Akin, D., Tindall, K., &
Jackson, R. (2013). Impact of twospotted spider mite (Acari: Tetranychidae) infestation timing on cotton yields. The Journal of Cotton Science, 17, 34–39.
Holdsworth, W. L., Summers, C. F., Glos, M., Smart, C. D., & Mazourek, M. (2014). Development of downy mildew-resistant cucumbers for late-season production in the northeastern United States. HortScience, 49(1), 10–17. https://doi.org/10.21273/HORTSCI.49.1.10
Instituto de Hidrología, Meteorología y Estudios Ambientales (n.d). Tiempo y clima: Promedios climatológicos 1981-2010 [Grupo de datos]. Recuperado 2020 de http://www.ideam.gov.co/web/tiempo-y-clima/clima
Jin, G., Gong, Y., ZongWei, Q., Zhu, L., Wang, Z., Chen, J., & Wei, S. (2016). Selectivity and fitness of the two-spotted spider mite, Tetranychus urticae (Acarina: Tetranychidae) to different varieties of eggplant. Acta Entomologica Sinica, 59(3), 328–336. https://doi.org/10.16380/j.kcxb.2016.03.010
Khanamani, M., Fathipour, Y., Hajiqanbar, H., & Sedaratian, A. (2012). Reproductive performance and life expectancy of Tetranychus urticae (Acari:Tetranychidae) on seven eggplant cultivars. Journal of Crop Protection, 46(8), 971-979. https://doi.org/10.1080/03235408.2012.755823
Khanamani, M., Fathipour, Y., Hajiqanbar, H., & Sedaratian, A. (2014). Two-spotted spider mite reared on resistant eggplant affects consumption rate and life table parameters of its predator, Typhlodromus bagdasarjani (Acari: Phytoseiidae). Experimental & Applied Acarology, 63(2), 241–252. https://doi.org/10.1007/s10493-014-9785-z
Kos, S. P., Klinkhamer, P. G. L., & Leiss, K. A. (2014). Cross-resistance of chrysanthemum to western flower thrips, celery leafminer, and two-spotted spider mite. Entomologia Experimentalis et Applicata, 151(3), 198–208. https://doi.org/10.1111/eea.12185
Kumar, D., Raghuraman, M., & Singh, J. (2014). Impact of abiotic factors on population dynamics of Phytophagous mite (Tetranychus ludeni Zacher) on cowpea in eastern Uttar Pradesh. The Ecoscan, 8 (1&2), 7–9. http://theecoscan.in/JournalPDF/81&202%20Dharmendra%20Kumar_2701.pdf
Leimu, R., & Koricheva, J. (2006). A meta-analysis of genetic correlations between plant resistances to multiple enemies. The American Naturalist, 168(1), E15-E37. https://doi.org/10.1086/505766
Lugo-Sánchez, M. Á., Flores-Canales, R. J., Isiordia-Aquino, N., Lugo-García, G. A., & Reyes-Olivas, Á. (2019). Ácaros
fitófagos asociados a jitomate en el norte de Sinaloa, México. Revista Mexicana de Ciencias Agrícolas, 10(7), 1541–1550. https://doi.org/10.29312/remexca.v10i7.1756
Martínez-Reina, A. M., Tordecilla-Zumaqué, L., Cordero-Cordero, C., & Grandett-Martínez, L. (2019a). Entorno tecnológico y socioeconómico de la habichuela larga en el Caribe húmedo de Colombia. Ciencia y Agricultura, 16(2), 7–24. https://doi.org/10.19053/01228420.v16.n2.2019.9114
Martínez-Reina, A. M., Tordecilla Zumaqué, L., Grandett, L., Rodríguez Pinto, M. del V., Cordero, C. C., Orozco Guerrero, A. R., Silva Acosta, G. E., Romero Ferrer, J. L., & Correa, E. (2019b). Análisis económico de la producción de berenjena (Solanum melongena L.) en dos zonas productoras del Caribe colombiano: Sabanas de Sucre y Valle del Sinú en Córdoba. Revista Ciencia y Agricultura, 16(3), 17-34. https://doi.org/10.19053/01228420.v16.n3.2019.9514
Mendonça, R. S., Navia, D., Diniz, I. R., & Flechtmann, C. H. W. (2011). South American spider mites: new hosts and localities. Journal of Insect Science, 11(1), Article 121. https://doi.org/10.1673/031.011.12101
Mesa, N. C. (1999). Acaros de importancia agrícola en Colombia. Revista Facultad Nacional de Agronomía, 52(1), 321–363.
Migeon, A., & Dorkeld, F. (2018, October 9). Spider mites Web: a comprehensive database for the Tetranychidae. In M. Sabelis, & J. Bruin (Eds.), Trends in Acarology (pp. 557-560). Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9837-5_96
Mitchell, C., Brennan, R. M., Graham, J., & Karley, A. J. (2016). Plant Defense against Herbivorous Pests: Exploiting Resistance and Tolerance Traits for Sustainable Crop Protection. Frontiers in Plant Science, 7, Article 1132. https://doi.org/10.3389/fpls.2016.01132
Moreno-Moran, M., & Burbano-Figueroa, O. (2019). Field resistance of advanced breeding lines of upland cotton to ramulosis caused by Colletotrichum gossypii var. cephalosporioides. Crop Protection, 122, 49–56. https://doi.org/10.1016/j.cropro.2019.04.008
Nair, S., Braman, S. K., & Knauft, D. A. (2012). Resistance mechanisms in Pieris taxa (Ericaceae) to Stephanitis takeyai (Hemiptera: Tingidae). Environmental Entomology, 41(5), 1153–1162. https://doi.org/10.1603/EN11323
Nauen, R., Slater, R., Sparks, T. C., Elbert, A., & Mccaffery, A. (2019). IRAC: Insecticide Resistance and Mode-of-action Classification of Insecticides. In P. Jeschke, M. Witschel, W. Krämer, & U. Schirmer (Eds.), Modern crop protection compounds (pp. 995–1012). Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527699261.ch28
Panda, N., & Khush, G. S. (1995). Host plant resistance to insects. CAB International.
Peterson, R. K. D., Varella, A. C., & Higley, L. G. (2017). Tolerance: the forgotten child of plant resistance. PeerJ, 5, e3934. https://doi.org/10.7717/peerj.3934
Red de información y comunicación del sector Agropecuario Colombiano. (2020). Reporte:Área, Producción y Rendimiento Nacional por Cultivo. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
Reddy, G. (2001). Comparative effectiveness of an integrated pest management system and other control tactics for managing the spider mite Tetranychus ludeni (Acari: Tetranychidae) on eggplant. Experimental & Applied Acarology, 25(12), 985–992. https://doi.org/10.1023/A:1020661215827
Reddy, G., & Baskaran, P. (1991). Biology and varietal preference of Tetranychus ludeni Zacher (Acari: Tetranychidae) on four varieties of eggplant, Solanum melongena. Mysore Journal of Agricultural Science, 25, 331–334.
Reddy, G., & Baskaran, P. (2006). Damage potential of the spider mite Tetranychus ludeni (Acari: Tetranychidae) on four varieties of eggplant. International Journal of Tropical Insect Science, 26(01), 48-56. https://doi.org/10.1079/IJT2006102
Regal, P. J. (1982). Pollination by Wind and Animals: Ecology of Geographic Patterns. Annual Review of Ecology and Systematics, 13(1), 497–524. https://doi.org/10.1146/annurev.es.13.110182.002433
Sinniah, G. D., Wasantha Kumara, K. L., Karunajeewa, D. G. N. P., & Ranatunga, M. A. B. (2016). Development of an
assessment key and techniques for field screening of tea (Camellia sinensis L.) cultivars for resistance to blister blight. Crop Protection, 79, 143–149. https://doi.org/10.1016/j.cropro.2015.10.017
Smith, C. M. (Ed.). (2005a). Plant resistance to arthropods. Springer, Verlag. https://doi.org/10.1007/1-4020-3702-3
Smith, C. M. (Ed.). (2005b). Plant resistance to arthropods. Springer, Verlag. https://doi.org/10.1007/1-4020-3702-3
Smith, C. M., & Chuang, W. P. (2014). Plant resistance to aphid feeding: behavioral, physiological, genetic and molecular cues regulate aphid host selection and feeding. Pest Management Science, 70(4), 528–540. https://doi.org/10.1002/ps.3689
Sperotto, R. A., Buffon, G., Schwambach, J., & Ricachenevsky, F. K. (2018). Crops responses to mite infestation: it’s time to look at plant tolerance to meet the farmers’ needs. Frontiers in Plant Science, 9, Article 556. https://doi.org/10.3389/fpls.2018.00556
Stout, M. J. (2013). Reevaluating the conceptual framework for applied research on host-plant resistance. Insect Science, 20(3), 263–272. https://doi.org/10.1111/1744-7917.12011
Stout, M., & Davis, J. (2009). Keys to the increased use of host plant resistance in integrated pest management. In R. Peshin, & A. K. Dhawan (Eds.), Integrated Pest Management: Innovation-Development Process (pp. 163–181). Springer, Netherlands. https://doi.org/10.1007/978-1-4020-8992-3_7
Taher, D., Rakha, M., Ramasamy, S., Solberg, S., & Schafleitner, R. (2019). Sources of Resistance for Two-spotted Spider Mite (Tetranychus urticae) in Scarlet (Solanum aethiopicum L.) and Gboma (S. macrocarpon L.) Eggplant Germplasms. HortScience, 54(2), 240–245. https://doi.org/10.21273/HORTSCI13669-18
Tapia-Coronado, J. J., Cadena-Torres, J., Correa-Álvarez, E. M., Jiménez-Mass, N. C., Rodríguez-Pinto, M. del V., Tamayo-Molano, P. J., & Arias-Bonilla, H. (2015). Modelo tecnológico del cultivo de berenjena para la región Caribe. Corporación Colombiana de Investigación Agropecuaria.
Tatis, H. A., Ayala, C. C., & Camacho, M. E. (2009). Caracterización de la morfología floral de dos cultivares de berenjena (Solanum melongena L.) (Solanaceae). Revista Facultad Nacional de Agronomía Medellín, 62(2), 5125-5134.
Vacante, V. (Ed.). (2009). Citrus mites: identification, bionomy and control. CAB International. https://doi.org/10.1079/9781845934989.0000
Willocquet, L., Lore, J. S., Srinivasachary, S., & Savary, S. (2011). Quantification of the components of resistance to rice sheath blight using a detached tiller test under controlled conditions. Plant Disease, 95(12), 1507–1515. https://doi.org/10.1094/PDIS-01-11-0051
Willocquet, L., Savary, S., & Yuen, J. (2017). Multiscale phenotyping and decision strategies in breeding for resistance. Trends in Plant Science, 22(5), 420–432. https://doi.org/10.1016/j.tplants.2017.01.009
Wiseman, B. R. (1994). Plant resistance to insects in integrated pest management. Plant Disease, 78(9), 927. https://doi.org/10.1094/PD-78-0927
Yuen, J. E., & Forbes, G. A. (2009). Estimating the level of susceptibility to Phytophthora infestans in potato genotypes. Phytopathology, 99(6), 782–786. https://doi.org/10.1094/PHYTO-99-6-0782
Zogli, P., Pingault, L., Grover, S., & Louis, J. (2020). Ento(o)mics: the intersection of “omic” approaches to decipher plant defense against sap-sucking insect pests. Current Opinion in Plant Biology, 56, 153–161. https://doi.org/10.1016/j.pbi.2020.06.002
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos morales de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución, no comercial y sin obra derivada de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista, no se puede hacer uso de la obra con propósitos comerciales y no se puede utilizar las publicaciones para remezclar, transformar o crear otra obra.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).