Compostaje para la reducción de excretas de aves (Gallus gallus domesticus)

Autores/as

DOI:

https://doi.org/10.15517/am.v33i1.44815

Palabras clave:

sector avícola, pollinaza, compostaje, abonos orgánicos

Resumen

Introducción. El crecimiento de la población y el consumo de fuentes de proteína como la carne de pollo, ha maximizado la generación de residuos avícolas (pollinaza), esto conlleva a desarrollar alternativas de manejo eficiente para la conversión de estos residuos en subproductos como los fertilizantes orgánicos. Numerosas investigaciones concluyen el efecto notable de la composta obtenida de residuos avícolas sobre el desarrollo y crecimiento de las cosechas, que aportan alto contenido de nutrimentos esenciales como enmienda en la agricultura agroecológica dentro de la economía circular y el desarrollo sustentable de la producción. Objetivo. Realizar una revisión sobre los planes de manejo de los residuos provenientes del sector avícola a través del compostaje para su uso en la agricultura en la región de Córdoba, Veracruz, México. Desarrollo. El estudio se llevó a cabo entre enero y junio de 2020, a través de una exhaustiva búsqueda bibliográfica y el análisis de experiencias locales en la producción de abonos orgánicos con campesinos. En esta revisión y con el trabajo de campo, los resultados establecieron que en la región es posible obtener diversos tipos de abono con la incorporación de excretas de aves, y las tecnologías de producción de composta, lombricomposta y bocashi de forma individual o en mezcla con otros subproductos regionales como los derivados de la industria azucarera, café, pecuaria etc. Se obtienen nutrimentos como nitrógeno de 2,08-2,34 %, fósforo 4,01-4,27 %, potasio 2,37-4,56 %, calcio 10,36-12,93, y magnesio 0,90-1,16 %, disponibles para su uso. Conclusión. Los subproductos avícolas tienen un gran potencial para generar alternativas de reúso mediante tecnologías de aplicación rural sin una inversión significativa y estrategias de manejo de residuos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alcántar, G. G., & Sandoval, V. M. (1999). Manual de Análisis Químico de Tejido Vegetal. Guía de Muestreo, Preparación Análisis e Interpretación (Publicación especial número 10). Sociedad Mexicana de la Ciencia del Suelo, A.C. http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=cidca.xis&method=post&formato=2&cantidad=1&expresion=mfn=005439

Alvarez-Vera, M., Largo, A., Iglesias-Abad, S., & Castillo, J. (2019). Calidad de compost obtenido a partir de estiércol de gallina, con aplicación de microorganismos benéficos. Scientia Agropecuaria, 10(3), 353–361. https://doi.org/10.17268/sci.agropecu.2019.03.05

Ashworth, A. J., Chastain, J. P., & Moore Jr, P. A. (2020). Nutrient characteristics of poultry manure and litter. In H. M. Waldrip, P. H. Pagliari, & Z. He (Eds.), Animal Manure: Production, Characteristics, Environmental Concerns, and Management (Vol. 67, pp. 63–87). ASA Special Publications. https://doi.org/10.2134/asaspecpub67.c5

Asses, N., Farhat, W., Hamdi, M., & Bouallagui, H. (2019). Large scale composting of poultry slaughterhouse processing waste: Microbial removal and agricultural biofertilizer application. Process Safety and Environmental Protection, 124, 128–136. https://doi.org/10.1016/j.psep.2019.02.004

Balón, A. D. L. C., Calderón, J., Ortiz, A. M. A., Cobeña, H., & Mendoza, M. (2019). Bioestabilización de excretas avícolas mediante microorganismos eficientes para el control de la contaminación ambiental. Revista de Investigaciones en Energía, Medio Ambiente y Tecnología, 4(1), 32–39. https://doi.org/10.33936/riemat.v4i1.1943

Bayrakdar, A., Molaey, R., Sürmeli, R. Ö., Sahinkaya, E., & Çalli, B. (2017). Biogas production from chicken manure: Co-digestion with spent poppy straw. International Biodeterioration and Biodegradation, 119, 205–210. https://doi.org/10.1016/j.ibiod.2016.10.058

Billen, P., Costa, J., Van der Aa, L., Van Caneghem, J., & Vandecasteele, C. (2015). Electricity from poultry manure: a cleaner alternative to direct land application. Journal of Cleaner Production, 96, 467–475. https://doi.org/10.1016/j.jclepro.2014.04.016

Buratti, C., Barbanera, M., Testarmata, F., & Fantozzi, F. (2015). Life cycle assessment of organic waste management strategies: An Italian case study. Journal of Cleaner Production, 89, 125–136. https://doi.org/10.1016/j.jclepro.2014.11.012

Brandelli, A., Sala, L., & Kalil, S. J. (2015). Microbial enzymes for bioconversion of poultry waste into added-value products. Food Research International, 73, 3–12. https://doi.org/10.1016/j.foodres.2015.01.015

Brunton, E. W. (2012). Animal waste management an industry perspective. American Society of Agricultural. https://doi.org/10.13031/ISSN.2151-0032

Casas-Rodríguez, S., & Guerra-Casas, L. D. (2020). La gallinaza, efecto en el medio ambiente y posibilidades de reutilización. Revista de Producción Animal, 32(3), 87–102.

Castro, B. J., Chirinos, P. D., & Lara, S. P. (2019). Evaluación del compost de guano de pollo en el rendimiento y calidad nutricional de la alfalfa en la sierra central del Perú. Revista de Investigación Veterinaria Perú, 30(4), 1562–1568.

Chen, H., Awasthi, S. K., Liu, T., Duan, Y., Ren, X., Zhang, Z., Pandey, A., & Awasthi, M. K. (2020). Effects of microbial culture and chicken manure biochar on compost maturity and greenhouse gas emissions during chicken manure composting. Journal of Hazardous Materials, 389, 121908. https://doi.org/10.1016/j.jhazmat.2019.121908

Chen, H. Y., Awasthi, M. K., Liu, T., Zhao, J. C., Ren, X. N., Wang, M. J., Duan, Y. M., Awasthi, S. K., & Zhang, Z. Q., (2018). Influence of clay as additive on greenhouse gases emission and maturity evaluation during chicken manure composting. Bioresource Technology, 266, 82–88. https://doi.org/10.1016/j.biortech.2018.06.073

Chojnacka, K., Moustakas, K., & Witek-Krowiak, A. (2020). Bio-based fertilizers: A practical approach towards circular economy. Bioresource Technology, 295, Article 122223. https://doi.org/10.1016/j.biortech.2019.122223

Consejo Mexicano de la Carne. (2019). Compendio estadístico 2019. https://comecarne.org/compendio-estadistico-2019/

da Silva Sunada, N., Amorim Orrico, A. C., Previdelli Orrico Junior, M. A., Ribeiro Centurion, S., Borges de Morais Oliveira, A., Mendes Fernandes, A. R., de Lucas Junior, J., & de Oliveira Seno, L. (2014). Compostagem de resíduo sólido de abatedouro avícola. Ciência Rural, 45(1), 178–183. https://doi.org/10.1590/0103-8478cr20120261

Debernardi-Vazquez, T. J., Aguilar-Rivera, N., & Nuñez-Pastrana, R. (2020). Composting of byproducts from the orange (Citrus sinensis (L.) Osbeck) and sugarcane (Saccharum spp. hybrids) agroindustries. Ingeniería e Investigación, 40(3), 81–88. https://doi.org/10.15446/ing.investig.v40n3.82877

Delgado Arroyo, M. M., Mendoza López, K. L., González, M. I., Tadeo Lluch, J. L., & Martín Sánchez, J. V. (2019). Evaluación del proceso de compostaje de residuos avícolas empleando diferentes mezclas de sustratos. Revista Internacional de Contaminación Ambiental, 35(4), 965–977. https://doi.org/10.20937/RICA.2019.35.04.15

Delgado Arroyo, M. M., Miralles de Imperial Hornedo, R., Masaguer Rodriguez, R. A., & Martín Sánchez, J. V. (2016). Estudio de turbas y residuos avícolas procedentes de pollo de engorde como componente de sustratos de cultivo. Revista Internacional de Contaminación Ambiental, 32(4), 455–462. https://doi.org/10.20937/RICA.2016.32.04.09

Deng, W., Zhang, A., Chen, S., He, X., Jin, L., Yu, Yang, S., Li, B., Fan, L., Ji, L., & Pan, X. (2020). Heavy metals, antibiotics and nutrients affect the bacterial community and resistance genes in chicken manure composting and fertilized soil. Journal of Environmental Management, 257, Article 109980. https://doi.org/10.1016/j.jenvman.2019.109980

Djekic, I., & Tomasevic, I. (2019). Environmental Indicators in the Meat Chain. In S. S. Muthu (Ed.), Quantification of Sustainability Indicators in the Food Sector (pp. 55–82). Springer. https://doi.org/10.1007/978-981-13-2408-6

Dróżdż, D., Wystalska, K., Malińska, K., Grosser, A., Grobelak, A., & Kacprzak, M. (2020). Management of poultry manure in Poland–Current state and future perspectives. Journal of Environmental Management, 264, Article 110327. https://doi.org/10.1016/j.jenvman.2020.110327

Duarte da Silva Lima, N., de Alencar Nääs, I., Garófallo Garcia, R., & Jorge de Moura, D. (2019). Environmental impact of Brazilian broiler production process: Evaluation using life cycle assessment. Journal of Cleaner Production, 237, Article 117752. https://doi.org/10.1016/j.jclepro.2019.117752

El-Daka, M. A., Ramzy, R. R., Plath, M., & Ji, H. (2021). Evaluating the impact of bird manure vs. mammal manure on Hermetia illucens larvae. Journal of Cleaner Production, 278, Article 123570. https://doi.org/10.1016/j.jclepro.2020.123570

Esteban, J., & Ladero, M. (2018). Food waste as a source of value-added chemicals and materials: a biorefinery perspective. International Journal of Food Science and Technology, 53(5), 1095–1108. https://doi.org/10.1111/ijfs.13726

Fang, H., Han, L., Zhang, H, Long, Z.; Cai, L., & Yu, Y. (2018). Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils. Journal of Hazardous Materials, 357(5), 53–62. https://doi.org/10.1016/j.jhazmat.2018.05.066

Fernández-Nieto, A. S., & Betancourt-González, A. R. (2018). Destino sostenible de los residuos generados en las plantas de beneficio avícola. Revista de Investigación, Administración e Ingeniería, 6(1), 13–24. https://doi.org/10.15649/2346030X.473

Florida N., Reategui F., & Pocomucha V. (2018). Caracterización de composta a base de plumas de pollo (Gallus gallus domesticus) y otros insumos. Investigación y Amazonía, 6(2), 1–5. https://revistas.unas.edu.pe/index.php/revia/article/viewFile/124/109

Freitag, C., Michael, G. B., Li, J., Kadlec, K., Wang, Y., Hassel, M., & Schwarz, S. (2018). Occurrence and characterisation of ESBL-encoding plasmids among Escherichia coli isolates from fresh vegetables. Veterinary Microbiology, 219, 63–69. https://doi.org/10.1016/j.vetmic.2018.03.028

Gómez-Brandón, M.; Lazcano, C., & Domínguez, J. (2008). The evaluation of stability and maturity during the composting of cattle manure. Chemosphere, 70(3), 436–444. https://doi.org/10.1016/j.chemosphere.2007.06.065

Hernández-Rodríguez, O. A., Hernández-Tecorral, A., Arras-Vota, A. M., & Ojeda-Barrios, D. (2013). Calidad nutrimental de cuatro abonos orgánicos producidos a partir de residuos vegetales y pecuarios. Terra Latinoamericana, 31(1), 35–46.

Herrera, J., Rojas, J. F., & Bolaños, A. (2013). Diagnóstico preliminar de los niveles de emisión de amoníaco y sulfuro de hidrógeno en distintas modalidades de producción en granjas avícolas en Costa Rica. Revista de Ciencias Ambientales, 46(2), 15–26.

Herrero, M., Henderson, B., Havlík, P., Thornton, P. K., Conant, R. T., Smith, P., & Butterbach-Bahl, K. (2016). Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 6(5), 452–461. https://doi.org/10.1038/nclimate2925

Holloway, J. W., & Wu, J. (2019). The consumer and extrinsic meat. In J. W. Holloway, & J. Wu (Eds.), Red meat science and production (Vol. 1, pp. 161–166). Springer. https://doi.org/10.1007/978-981-13-7856-0_7

Hoover, N. L., Law, J. Y., Long, L. A. M., Kanwar, R. S., & Soupir, M. L. (2019). Long-term impact of poultry manure on crop yield, soil and water quality, and crop revenue. Journal of Environmental Management, 252, Article 109582. https://doi.org/10.1016/j.jenvman.2019.109582

Huang, J., Yu, Z., Gao, H., Yan, X., Chang, J., & Wang, C. (2017). Chemical structures and characteristics of animal manures and composts during composting and assessment of maturity indices. PLoS ONE, 12(6), Article e0178110. https://doi.org/10.1371/journal.pone.0178110

Hubbard, L. E., Givens, C. E., Griffin, D. W., Iwanowicz, L. R., Meyer, M. T., & Kolpin, D. W. (2020). Poultry litter as potential source of pathogens and other contaminants in groundwater and surface water proximal to large-scale confined poultry feeding operations. Science of The Total Environment, 735, Article 139459. https://doi.org/10.1016/j.scitotenv.2020.139459

Hussein, M. S., Burra, K. G., Amano, R. S., & Gupta, A. K. (2017). Temperature and gasifying media effects on chicken manure pyrolysis and gasification. Fuel, 202, 36–45. https://doi.org/10.1016/j.fuel.2017.04.017

Kalhor, T., Rajabipour, A., Akram, A., & Sharifi, M. (2016). Environmental impact assessment of chicken meat production using life cycle assessment. Information Processing in Agriculture, 3(4), 262–271. https://doi.org/10.1016/j.inpa.2016.10.002

Kanani, F., Heidari, M. D., Gilroyed, B. H., & Pelletier, N. (2020). Waste valorization technology options for the egg and broiler industries: A review and recommendations. Journal of Cleaner Production, 262, Article 121129. https://doi.org/10.1016/j.jclepro.2020.121129

Kopeć, M., Gondek, K., Mierzwa-Hersztek, M., & Antonkiewicz, J. (2018). Factors influencing chemical quality of composted poultry waste. Saudi Journal of Biological Sciences, 25(8), 1678–1686. https://doi.org/10.1016/j.sjbs.2016.09.012

Lakshmi, V. V., Aruna Devi, D., & Jhansi Rani, K. P. (2020). Wealth from poultry waste. In S. K. Ghosh, C. Bhattacharya, S. V. Satyanarayana, & S. Varadarajan (Eds.), Waste management as economic industry towards circular economy (pp. 135–144). Springer. https://doi.org/10.1007/978-981-15-1620-7_7

Li, M. X., He, X. S., Tang, J., Li, X., Zhao, R., Tao, Y. Q., & Qiu, Z. P. (2021). Influence of moisture content on chicken manure stabilization during microbial agent-enhanced composting. Chemosphere, 264(Part 2), Article 128549. https://doi.org/10.1016/j.chemosphere.2020.128549

Li, Z., Lu, H., Ren, L., & He, L. (2013). Experimental and modeling approaches for food waste composting: A review. Chemosphere, 93(7), 1247–1257. https://doi.org/10.1016/j.chemosphere.2013.06.064

Ma, J., & You, F. (2019). Superstructure optimization of thermal conversion based poultry litter valorization process. Journal of Cleaner Production, 228, 1111–1121. https://doi.org/10.1016/j.jclepro.2019.04.346

MacLeod, M., Gerber, P., Mottet, A., Tempio, G., Falcucci, A., Opio, C., Vellinga, T., Henderson, B., & Steinfeld, H. (2013). Greenhouse gas emissions from pig and chicken supply chains–A global life cycle assessment. Food and Agriculture Organization of the United Nations.

Maldaner, L., Wagner-Riddle, C., VanderZaag, A. C., Gordon, R., & Duke, C. (2018). Methane emissions from storage of digestate at a dairy manure biogas facility. Agricultural and Forest Meteorology, 258, 96–107. https://doi.org/10.1016/j.agrformet.2017.12.184

Malovanyy, M., Kanda, M., Paraniak, R., Odnorih, Z., & Tymchuk, I. (2021). The strategy of environmental danger minimization from poultry farms waste. Journal of Ecological Engineering, 22(5), 229–237. https://doi.org/10.12911/22998993/135317

Matheri, A. N., Ndiweni, S. N., Belaid, M., Muzenda, E., & Hubert, R. (2017). Optimising biogas production from anaerobic co-digestion of chicken manure and organic fraction of municipal solid waste. Renewable and Sustainable Energy Reviews, 80, 756–764. https://doi.org/10.1016/j.rser.2017.05.068

Molaey, R., Bayrakdar, A., Sürmeli, R. Ö., & Çalli, B. (2018). Anaerobic digestion of chicken manure: Mitigating process inhibition at high ammonia concentrations by selenium supplementation. Biomass and Bioenergy, 108, 439–446. https://doi.org/10.1016/j.biombioe.2017.10.050

Mottet, A., & Tempio, G. (2017). Global poultry production: current state and future outlook and challenges. World’s Poultry Science Journal, 73(2), 245–256. https://doi.org/10.1017/S0043933917000071

Nahm, K. H. (2003). Evaluation of the nitrogen content in poultry manure. World’s Poultry Science Journal, 59(1), 77–88. https://doi.org/10.1079/WPS20030004

Nayak, A., & Bhushan, B. (2019). An overview of the recent trends on the waste valorization techniques for food wastes. Journal of Environmental Management, 233, 352–370. https://doi.org/10.1016/j.jenvman.2018.12.041

Neill, A. J., Tetzlaff, D., Strachang, N. J. C., Houngh, L. R., Avery, L. M., Watson, H., & Soulsby, C. (2018). Using spatial-stream-network models and long-term data to understand and predict dynamics of faecal contamination in a mixed land-use catchment. Science of the Total Environment, 612, 840–852. https://doi.org/10.1016/j.scitotenv.2017.08.151

Nijdam, D., Rood, T., & Westhoek, H. (2012). The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy, 37(6), 760–770. https://doi.org/10.1016/j.foodpol.2012.08.002

Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2013). Poultry Development Review. http://www.fao.org/docrep/019/i3531e/i3531e.pdf

Organización para la Cooperación y el Desarrollo Económicos. (2010). Resource Productivity in the G8 and the OECD. A Report in the Framework of the Kobe 3R Action Plan. www.oecd.org/env/waste/47944428.pdf

Organización para la Cooperación y el Desarrollo Económicos, & Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2016). Perspectivas agrícolas 2016-2025. http://www.fao.org/3/a-i5778e.pdf

Ozdemir, S., & Yetilmezsoy, K. (2020). A mini literature review on sustainable management of poultry abattoir wastes. Journal of Material Cycles and Waste Management, 22, 11–21. https://doi.org/10.1007/s10163-019-00934-1

Palomino, L., Vega, R., Lara, C., Gomero, L., & García, S. (2019). Evaluación de cinco residuos avícolas como fuentes de nitrógeno mineral disponible. Idesia (Arica), 37(3), 121–129. https://doi.org/10.4067/S0718-34292019000300121

Pinos-Rodríguez, J. M., García-López, J. C., Peña-Avelino, L. Y., Rendón-Huerta, J. A., González-González, C., & Tristán-Patiño, F. (2012). Impactos y regulaciones ambientales del estiércol generado por los sistemas ganaderos de algunos países de América. Agrociencia, 46(4), 359–370.

Ravindran, B., Mupambwa, H. A., Silwana, S., & Mnkeni, P. N. (2017). Assessment of nutrient quality, heavy metals and phytotoxic properties of chicken manure on selected commercial vegetable crops. Heliyon, 3(12), Article e00493. https://doi.org/10.1016/j.heliyon.2017.e00493

Rayne, N., & Aula, L. (2020). Livestock manure and the impacts on soil health: A review. Soil Systems, 4(4), Article 64. https://doi.org/10.3390/soilsystems4040064

Riaz, L., Wang, Q., Yang, Q., Li, X., & Yuan, W. (2020). Potential of industrial composting and anaerobic digestion for the removal of antibiotics, antibiotic resistance genes and heavy metals from chicken manure. Science of the Total Environment, 718, Article 137414. https://doi.org/10.1016/j.scitotenv.2020.137414

Rico-Contreras, J. O., Aguilar-Lasserre, A. A., Méndez-Contreras, J. M., Cid-Chama, G., & Alor-Hernández, G. (2014). Predicción del contenido de humedad en la pollinaza para estimar la producción de bioenergía a través de una red neuronal artificial. Revista Mexicana de Ingeniería Química, 13(3), 933–955.

Rico-Contreras, J. O., Aguilar-Lasserre, A. A., Méndez-Contreras, J. M., López-Andrés, J. J., & Cid-Chama, G. (2017). Moisture content prediction in poultry litter using artificial intelligence techniques and Monte Carlo simulation to determine the economic yield from energy use. Journal of Environmental Management, 202(Part 1), 254–267. https://doi.org/10.1016/j.jenvman.2017.07.034

Rocchi, L., Paolotti, L., Rosati, A., Boggia, A., & Castellini, C. (2019). Assessing the sustainability of different poultry production systems: A multicriteria approach. Journal of Cleaner Production, 211, 103–114. https://doi.org/10.1016/j.jclepro.2018.11.013

Román, P., Martínez, M., & Pantoja, A. (2013). Manual de compostaje del agricultor, Experiencias en América Latina. Organización de las Naciones Unidas para la Alimentación y la Agricultura. http://www.fao.org/3/i3388s/i3388s.pdf

Qian, Y., Song, K., Hu, T., & Ying, T. (2018). Environmental status of livestock and poultry sectors in China under current transformation stage. Science of the Total Environment, 622-623, 702–709. https://doi.org/10.1016/j.scitotenv.2017.12.045

Seidavi, A. R., Zaker-Esteghamati, H., & Scanes, C. G. (2019). Present and potential impacts of waste from poultry production on the environment. World’s Poultry Science Journal, 75(1), 29–42. https://doi.org/10.1017/S0043933918000922

Senthilkumar, K., Kumar, M. N., Devi, V. C., Saravanan, K., & Easwaramoorthi, S. (2020). Agro-industrial waste valorization to energy and value added products for environmental sustainability. In R. Praveen Kumar, B. Bhararhiraja, R. Kataki, & V. Moholkar (Eds.), Biomass valorization to bioenergy (pp. 1–9). Springer. https://doi.org/10.1007/978-981-15-0410-5_1

Skunca, D., Tomasevic, I., Nastasijevic, I., Tomovic, V., & Djekic, I. (2018). Life cycle assessment of the chicken meat chain. Journal of Cleaner Production, 184, 440–450. https://doi.org/10.1016/j.jclepro.2018.02.274

Sistema de Información Agroalimentaria y Pesquera. (2020). Producción Ganadera. https://www.gob.mx/siap/acciones-y-programas/produccion-pecuaria

Sistema de Información Agroalimentaria y Pesquera. (2019). Resumen Nacional. http://infosiap.siap.gob.mx/repoAvance_siap_gb/pecResumen.jsp

Stiborova, H., Kronusova, O., Kastanek, P., Brazdova, L., Lovecka, P., Jiru, M., Belkova, B., Poustka, J., Stranska, M., Hajslova, J., & Demnerova, K. (2020). Waste products from the poultry industry: a source of high-value dietary supplements. Journal of Chemical Technology and Biotechnology, 95(4), 985–992. https://doi.org/10.1002/jctb.6131

Swain, M., Blomqvist, L., McNamara, J., & Ripple, W. J. (2018). Reducing the environmental impact of global diets. Science of the Total Environment, 610, 1207–1209. https://doi.org/10.1016/j.scitotenv.2017.08.125

Unión Nacional de Avicultores. (2019). Indicadores económicos. https://una.org.mx/indicadores-economicos/

United States Department of Agriculture. (2020). Poultry & eggs. https://www.ers.usda.gov/topics/animal-products/poultry-eggs/

Velasco-Velasco, J. (2016). Buenas prácticas de manejo y emisiones de amoniaco en explotaciones avícolas. Agroproductividad, 9(8), 38–44. http://www.revista-agroproductividad.org/index.php/agroproductividad/article/view/799

Tańczuk, M., Junga, R., Werle, S., Chabiński, M., & Ziółkowski, Ł. (2019). Experimental analysis of the fixed bed gasification process of the mixtures of the chicken manure with biomass. Renewable Energy, 136, 1055–1063. https://doi.org/10.1016/j.renene.2017.05.074

Tiquia, S. M., & Tam, F. N. Y. (1998). Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge. Bioresource Technology, 65(1–2), 43–49. https://doi.org/10.1016/S0960-8524(98)00024-8

Thomas, C., Idler, C., Ammon, C., & Amon, T. (2020). Effects of the C/N ratio and moisture content on the survival of ESBL-producing Escherichia coli during chicken manure composting. Waste Management, 105, 110–118. https://doi.org/10.1016/j.wasman.2020.01.031

Toledo, M., Gutiérrez, M. C., Peña, A., Siles, J. A., & Martín, M. A. (2020). Co-composting of chicken manure, alperujo, olive leaves/pruning and cereal straw at full-scale: Compost quality assessment and odour emission. Process Safety and Environmental Protection, 139, 362–370. https://doi.org/10.1016/j.psep.2020.04.048

Topal, H., Taner, T., Altinsoy, Y., & Amirabedin, E. (2018). Application of trigeneration with direct co-combustion of poultry waste and coal: A case study in the poultry industry from Turkey. Thermal Science, 22(6 Part B), 3073–3082. https://doi.org/10.2298/TSCI170210137T

Wang, L. Z., Xue, B., & Yan, T. (2017). Greenhouse gas emissions from pig and poultry production sectors in China from 1960 to 2010. Journal of Integrative Agriculture, 16(1), 221–228. https://doi.org/10.1016/S2095-3119(16)61372-2

Wu, S., Ni, P., Li, J., Sun, H., Wang, Y., Luo, H., Dach, J., & Dong, R. (2016). Integrated approach to sustain biogas production in anaerobic digestion of chicken manure under recycled utilization of liquid digestate: Dynamics of ammonium accumulation and mitigation control. Bioresource Technology, 205, 75–81.

Yu, Y., Chen, L., Jia, X., & Chen, J. (2019a). High temperatures can effectively degrade residual tetracyclines in chicken manure through composting. Journal of Hazardous Materials, 380, Article 120862. https://doi.org/10.1016/j.jhazmat.2019.120862

Yu, H., Xie, B., Khan, R., & Shen, G. (2019b). The changes in carbon, nitrogen components and humic substances during organic-inorganic aerobic co-composting. Bioresource Technology, 271, 228–235. https://doi.org/10.1016/j.biortech.2018.09.088

Yuvaraj, A., Thangaraj, R., Ravindran, B., Chang, S. W., & Karmegam, N. (2020). Centrality of cattle solid wastes in vermicomposting technology–A cleaner resource recovery and biowaste recycling option for agricultural and environmental sustainability. Environmental Pollution, 268(Part A), Article 115688. https://doi.org/10.1016/j.envpol.2020.115688

Zhang, H., Zang, Q., Song, J., Zang, Z., Chen, S., Long, Z., Wang, M., Yu, Y., & Fang, H. (2020). Tracking resistomes, virulence genes, and bacterial pathogens in long-term manure-amended greenhouse soils. Journal of Hazardous Materials, 396, Article 122618. https://doi.org/10.1016/j.jhazmat.2020.122618

Publicado

2021-12-09

Cómo citar

Rosas-Martínez, V., & Aguilar-Rivera, N. (2021). Compostaje para la reducción de excretas de aves (Gallus gallus domesticus). Agronomía Mesoamericana, 33(1), 44815. https://doi.org/10.15517/am.v33i1.44815

Número

Sección

Revisiones bibliográficas