¿La palma aceitera (Elaeis guineensis) genera un impacto negativo sobre el suelo? Una revisión
DOI:
https://doi.org/10.15517/am.v34i1.50301Palabras clave:
organismos de suelo, degradaci, degradación del suelo, fertilidad del sueloResumen
Introducción. La palma de aceite (Elaeis guineensis) es uno de los monocultivos perennes que se ha extendido a casi un poco más de diecinueve millones de hectáreas en el mundo, su expansión ha generado debate social, económico y político en diversos países tropicales. Una de las problemáticas que se ha discutido, es el impacto sobre las propiedades fisicoquímicas, biológicas y ecológicas del suelo. Objetivo. (i) Ofrecer un panorama actual de la expansión del cultivo de palma de aceite para una zona de la región Soconusco, Chiapas, México, (ii) documentar los efectos que provoca la palma de aceite sobre las propiedades fisicoquímicas y biológicas del suelo y (iii) presentar algunas propuestas de prácticas de manejo para incrementar la fertilidad y la abundancia de macroinvertebrados del suelo. Desarrollo. Se realizó la búsqueda de palabras clave en el apartado de “tópicos” dentro de la base de datos “Web of Science” del año 2009 hasta marzo del 2018. Se consultaron investigaciones que relacionan el cultivo de la palma de aceite con los parámetros físicos, químicos y biológicos del suelo. La literatura demuestra los efectos negativos que genera el monocultivo de palma de aceite sobre algunas propiedades fisicoquímicas del suelo y sobre la ecología y biología de la macrofauna edáfica. Conclusión. Se muestra evidencia de que el mal manejo del monocultivo de la palma de aceite tiene implicaciones ambientales. La integración de buenas prácticas de manejo sostenibles, podrían mitigar los daños al suelo.
Descargas
Citas
Abram, N. K., Xofis, P., Tzanopoulos, J., MacMillan, D. C., Ancrenaz, M., Chung, R., Peter, L., Ong, R., Lackman, I., Goossens, B., Ambu, L., & Knight, A. T. (2014). Synergies for improving oil palm production and forest conservation in floodplain landscapes. PLoS ONE, 9(6), Article e95388. https://doi.org/10.1371/journal.pone.0095388
Abubakar, A., Yusoff Ishak, M. & Ahmad Makmom, A. (2022). Nexus between climate change and oil palm production in Malaysia: a review. Environmental Monitoring and Assessment, 194, Article 262. https://doi.org/10.1007/s10661-022-09915-8
Akinyele, S. A., & Fatoye, O. A. (2013). Effect of oil palm effluents and fiber on selected soil properties, carbon, nitrogen, potassium and phosphorous. IOSR Journal of Environmental Science, Toxicology and Food Technology, 6(2), 5–7. https://bit.ly/3GPk3gu
Akinde, B. P., Olakayode, A. O., Oyedele, D. J., & Tijani, F. O. (2020). Selected physical and chemical properties of soil under different agricultural land-use types in Ile-Ife, Nigeria. Heliyon, 6(9), Article e05090. https://doi.org/10.1016/j.heliyon.2020.e05090
Akram, H., Levia, D. F., Herrick, J. E., Lydiasari, H., & Schütze, N. (2022). Water requirements for oil palm grown on marginal lands: A simulation approach. Agricultural Water Management, 260, Article 107292. https://doi.org/10.1016/j.agwat.2021.107292
Al-Esawi, J. S. E., Wayayok, A., Al-Ogaidi, A. A., Rowshon, M. K., Fikri Abdullah, A., & Abdullahi, S. (2021). Effect of soil compaction and palm oil application on soil infiltration rate. Journal of Irrigation and Drainage Engineering, 147(3), Article 04020044. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001534
Anyaoha, K. E., Sakrabani, R., Patchigolla, K., & Mouazen, A. M. (2018). Critical evaluation of oil palm fresh fruit bunch solid wastes as soil amendments: Prospects and challenges. Resources, Conservation and Recycling, 136, 399–409. https://doi.org/10.1016/j.resconrec.2018.04.022
Ashton-Butt, A., Willcock, S., Purnomo, D., Suhardi, Aryawan, A. A., Wahyuningsih, R., Naim, M., Poppy G. M., Caliman J. P., Peh K. S. H., & Snaddon, J. L. (2019). Replanting of first-cycle oil palm results in a second wave of biodiversity loss. Ecology and Evolution, 9(11), 6433–6443. https://doi.org/10.1002/ece3.5218
Astier-Calderón, M., Maass-Moreno, M., & Etchevers-Barra, J. (2002). Derivación de indicadores de calidad de suelos en el contexto de la agricultura sustentable. Agrociencia, 36(5), 605–620. https://bit.ly/3OxTuOW
Azhar, B., Saadun, N., Prideaux, M., & Lindenmayer, D. B. (2017). The global palm oil sector must change to save biodiversity and improve food security in the tropics. Journal of Environmental Management, 203, 457–466. https://doi.org/10.1016/j.jenvman.2017.08.021
Barnes, A. D., Jochum, M., Mumme, S., Haneda, N. Farikhah Farajallah, A., Heru Widarto, T., & Brose, U. (2014). Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning. Nature Communications, 5, Article 6351. https://doi.org/10.1038/ncomms6351
Barrios-Maestre, R., Fariñas, J., Silva-Acuña, R., & Sanabria, D. (2011). Comportamiento de cinco especies de leguminosas como cobertura viva en palma aceitera en el estado Monagas, Venezuela. Idesia, 29(2), 29–37. https://idesia.uta.cl/index.php?option=com_volumenes&view=d&aid=643&vid=45
Basri Wahid, M. B., Akmar Abdullah, S. N., & Henson, I. E. (2005). Oil palm-achievements and potential. Plant Production Science, 8(3), 288–297. https://doi.org/10.1626/pps.8.288
Baumgartner, D. U., de Baan, L., Nemecek, T., Pressenda, F., & Crépon, K. (2008, November 12–14). Life cycle assessment of feeding livestock with European grain legumes [Conference session]. Proceedings of the 6th international conference on Life Cycle Assessment in the Agri-Food Sector. Zurich, Switzerland. https://edepot.wur.nl/8243
Behera, S. K., Shukla, A. K., Suresh, K., Manorama, K., Mathur, R. K., Kumar, A., Harinarayana, P., Prakash, C., & Tripathi, A. (2020). Oil palm cultivation enhances soil pH, electrical conductivity, concentrations of exchangeable calcium, magnesium and available sulphur and soil organic carbon content. Land Degradation & Development, 31, 2789–2803. https://doi.org/10.1002/ldr.3657
Bessou, C., & Marichal, R. (2015). Soil fertility, evolving concepts and assessments. In M. J. Webb, P. N. Nelson, C. Bessou, J. P. Caliman, & E. S. Sutarta (Eds.), Sustainable management of soil in oil palm plantings: Proceedings of a workshop held in Medan, Indonesia (pp. 53–59). Australian Center for International Agricultural Research. https://agritrop.cirad.fr/579051/7/chap_579051.pdf
Bessou, C., Verwilghen, A., Beaudouin-Ollivier, L., Marichal, R., Ollivier, J., Baron, V., Bonneau, X., Carron, M.P., Snoeck, D., Naim, M., & Caliman, J. P. (2017). Agroecological practices in oil palm plantations: examples from the field. Oilseeds and Fats Crops and Lipids, 24(3), Article D305. https://doi.org/10.1051/ocl/2017024
Bot, A., & Benites, J. (2005). The importance of soil organic matter: Key to drought-resistant soil and sustained food production. Food & Agriculture Organization of the United Nations. http://www.fao.org/3/a0100e/a0100e00.htm#Contents
Cámara de Diputados (2011, mayo 04). Acuerdo por el que se emiten los lineamientos específicos para la operación del proyecto transversal trópico húmedo. Diario Oficial de la Federación. http://www.dof.gob.mx/nota_detalle.php?codigo=5188289&fecha=04/05/2011
Carlson, K. M., Curran, L. M., Ratnasari, D., Pittman, A. M., Soares-Filho, B. S., Asner, G. P., Trigg, S.N., Gaveau, D.A., Lawrence, D., & Rodrigues, H. O. (2012). Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia. Proceedings of the National Academy of Sciences, 109(19), 7559–7564. https://doi.org/10.1073/pnas.1200452109
Carron, M. P., Auriac, Q., Snoeck, D., Villenave, C., Blanchart, E., Ribeyre, F., Marichal, R., Darminto, M., & Caliman, J. P. (2015). Spatial heterogeneity of soil quality around mature oil palms receiving mineral fertilization. European Journal of Soil Biology, 66, 24–31. https://doi.org/10.1016/j.ejsobi.2014.11.005
Carron, M. P., Pierrat, M., Snoeck, D., Villenave, C., Ribeyre, F., Marichal, R., & Caliman, J. P. (2015). Temporal variability in soil quality after organic residue application in mature oil palm plantations. Soil Research, 53(2), 205–215. https://doi.org/10.1071/SR14249
Choo, Y. M., Muhamad, H., Hashim, Z., Subramaniam, V., Puah, C. W., & Tan, Y. (2011). Determination of GHG contributions by subsystems in the oil palm supply chain using the LCA approach. The International Journal of Life Cycle Assessment, 16(7), 669–681. https://doi.org/10.1007/s11367-011-0303-9
Comte, I., Colin, F., Whalen, J. K., Grünberger, O., & Caliman, J. P. (2012). Agricultural practices in oil palm plantations and their impact on hydrological changes, nutrient fluxes and water quality in Indonesia: a review. Advances in Agronomy, 116, 71–124. https://doi.org/10.1016/B978-0-12-394277-7.00003-8
Coutris, C., Joner, E. J, & Oughton, D. H. 2012. Aging and soil organic matter content affect the fate of silver nanoparticles in soil. Science of the Total Environment, 420, 327–333. https://doi.org/10.1016/j.scitotenv.2012.01.027
Craven, C. (2011). The Honduran palm oil industry: Employing lessons from Malaysia in the search for economically and environmentally sustainable energy solutions. Energy Policy, 39(11), 6943–6950. https://doi.org/10.1016/j.enpol.2010.09.028
da Silva Maia, R., Silva Vasconcelos, S., Barbosa Viana-Junior, A., Castellani, D. C., & Ryohei Cato, O. (2021). Oil palm (Elaeis guineensis) shows higher mycorrhizal colonization when planted in agroforestry than in monoculture. Agroforestry Systems, 95, 731–740. https://doi.org/10.1007/s10457-021-00627-5
Dhandapani, S., Girkin, N. T., Evers, S., Ritz, K., & Sjögersten, S. (2020). Is Intercropping an Environmentally-Wise Alternative to Established Oil Palm Monoculture in Tropical Peatlands? Frontiers in Forest and Global Change, 3, Article 70. https://doi.org/10.3389/ffgc.2020.00070
Dhandapani, S., Ritz, K., Evers, S., & Sjögersten, S. (2019). Environmental impacts as affected by different oil palm cropping systems in tropical peatlands. Agriculture. Ecosystems & Environment, 276, 8–20. https://doi.org/10.1016/j.agee.2019.02.012
Dislich, C., Keyel, A. C., Salecker, J., Kisel, Y., Meyer, K. M., Auliya, M., Barnes, A.D., Corre, M.D., Darras, K., Faust, H., Hess, B., Klasen, S., Knohl, A., Kreft, H., Meijide, A., Nurdiansyah, F., Otten, F., Pe’er, G., Steinebach, S., Tarigan, S., Tôle, M. H., Tscharntke, T., & Wiegand, K. (2017). A review of the ecosystem functions in oil palm plantations, using forests as a reference system. Biological Reviews, 92(3), 1539–1569. https://doi.org/10.1111/brv.12295
Ebana, R. U. B., Edet, U. O., Ekanemesang, U. M., & Effiong, O. O. (2017). Physicochemical characterization of palm mill oil effluent and bioremediation of impacted soil. Asian Journal of Environment & Ecology, 2(1), 1–9. https://doi.org/10.9734/AJEE/2017/31221
Fitzherbert, E. B., Struebig, M. J., Morel, A., Danielsen, F., Brühl, C. A., Donald, P. F., & Phalan, B. (2008). How will oil palm expansion affect biodiversity? Trends in Ecology & Evolution, 23(10), 538–545. http://doi.org/10.1016/j.tree.2008.06.012
Fletes-Ocón, H. B., & Bonanno, A. (2015). Respuestas a la crisis de la globalización neoliberal: intervención del Estado en la producción de aceite de palma en Chiapas, México. Carta Económica Regional, 27(116), 5–35. https://bit.ly/3tW8DQC
Formaglio, G., Veldkamp, E., Damris, M., Tjoa, A., & Corre, M. D. (2021). Mulching with pruned fronds promotes the internal soil N cycling and soil fertility in a large-scale oil palm plantation. Biogeochemistry, 154, 63–80. https://doi.org/10.1007/s10533-021-00798-4
Foster, W. A., Snaddon, J. L., Turner, E. C., Fayle, T. M., Cockerill, T. D., Farnon Ellwood, M. D., Broad, G. R., Chung, A. Y. C., Eggleton, P., Vun Khen, C., & Yusah, K. M. (2011). Establishing the evidence base for maintaining biodiversity and ecosystem function in the oil palm landscapes of South East Asia. Philosophical Transactions of the Royal Society B, 366(1582), 3277–3291. https://doi.org/10.1098/rstb.2011.0041
Furumo, P. R., & Mitchell Aide, T. M. (2017a). Caracterización de la expansión de la palma de aceite para uso comercial en América Latina: cambio en el uso del suelo y comercialización. Revista Palmas, 38(2), 27–48. https://publicaciones.fedepalma.org/index.php/palmas/article/view/12123
Furumo, P. R., & Mitchell Aide, T. M. (2017b). Characterizing commercial oil palm expansion in Latin America: land use change and trade. Environmental Research Letters, 12(2), Article 024008. https://doi.org/10.1088/1748-9326/aa5892
Goh, K. J., Mahamooth, T. N., Patrick, N. H. C., Teo, C. B., & Liew, Y. A. (2016). Managing soil environment & its major impact on oil palm nutrition & productivity in Malaysia. Sarawak Oil Palm Plantation Owners Association. http://soppoa.org.my/wp-content/uploads/2016/12/MEOA_Topic_2_Dr_Liew.pdf
Gomes, M. F., Vasconcelos, S. S., Viana-Junior, A. B., Costa, A. N. M., Barros, P. C., Ryohei Kato, O., & Castellani, D. C. (2021). Oil palm agroforestry shows higher soil permanganate oxidizable carbon than monoculture plantations in Eastern Amazonia. Land Degradation & Development, 32(15), 4313–4326. https://doi.org/10.1002/ldr.4038
Google Earth. (2020). Áreas de palma de aceite en la localidad el Arenal en el municipio de Acapetahua, Soconusco, Chiapas, México. https://earth.google.com
Gray, C. L., & Lewis, O. T. (2014). Do riparian forest fragments provide ecosystem services or disservices in surrounding oil palm plantations? Basic and Applied Ecology, 15(8), 693–700. https://doi.org/10.1016/j.baae.2014.09.009
Gray, C. L., Simmons, B. I., Fayle, T. M., Mann, D. J., & Slade, E. M. (2016). Are riparian forest reserves sources of invertebrate biodiversity spillover and associated ecosystem functions in oil palm landscapes? Biological Conservation, 194, 176–183. https://doi.org/10.1016/j.biocon.2015.12.017
Iyakndue, M. L., Brooks, A. A., Unimke, A. A., & Agbo, B. E. (2017). Effects of palm oil mill effluent on soil microflora and fertility in Calabar–Nigeria. Asian Journal of Biology, 2(3), 1–11. https://doi.org/10.9734/AJOB/2017/33015
Khatun, R., Hasan Reza, M. I., Moniruzzaman, M., & Yaakob, Z. (2017). Sustainable oil palm industry: The possibilities. Renewable and Sustainable Energy Reviews, 76, 608–619. https://doi.org/10.1016/j.rser.2017.03.077
Kurniawan, S., Corre, M.D., Rahayu Utami, S., & Veldkamp, E. (2018). Soil biochemical properties and nutrient leaching from smallholder oil palm plantations, Sumatra-Indonesia. AGRIVITA journal Agricultural Science, 40(2), 257–266. https://doi.org/10.17503/agrivita.v40i2.1723
Lahmar, R., & Ruellan, A. (2007). Dégradation des sols et stratégies coopératives en Méditerranée : la pression sur les ressources naturelles et les stratégies de développement durable. Cahiers Agricultures, 16(4), 318–323. https://doi.org/10.1684/agr.2007.0119
Larson, W. E., & Pierce, F. J. (1991, September 15-21). Conservation and enhancement of soil quality [Conference session]. Proceedings of the International Workshop on Evaluation for Sustainable Land Management in the Developing World. Chiang Rai, Thailand.
Lavelle, P., & Spain, A. V. (2001). Soil ecology. Kluwer Academic Publishers. https://doi.org/10.1007/0-306-48162-6
Li, Y., Hu, S., Chen, J., Müller, K., Li, Y., Fu, W., Lin, Z. & Wang, H. (2018). Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review. Journal of Soils and Sediments, 18, 546–563. https://doi.org/10.1007/s11368-017-1906-y
Ling Lau, S. Y., Midot, M., Peter Dom, S., Lieng Lo, M., Chin, M. -Y., Sie Jee, M., Lan Yap, M., Chaddy, A., & Melling. L. (2022). Application of ammonium sulfate affects greenhouse gases and microbial diversity of an oil palm plantation on tropical peat. Archives of Agronomy and Soil Science, 2022, Article 650. https://doi.org/10.1080/03650340.2021.2022650
Lucey, J. M., Tawatao, N., Senior, M. J., Chey, V. K., Benedick, S., Hamer, K. C., Woodcock, P. Newton, R., Bottrell, R. J., & Hill, J. K. (2014). Tropical forest fragments contribute to species richness in adjacent oil palm plantations. Biological Conservation, 169, 268–276. https://doi.org/10.1016/j.biocon.2013.11.014
Manorama, K., Behera, S. K., Suresh, K., Prasad, M. V., Mathur, R. K., & Harinarayana, P. (2021). Mulching and technological interventions avoid land degradation in an intensive oil palm (Elaeis guineensis Jacq.) production system. Land Degradation & Development, 32(13), 3785–3797. https://doi.org/10.1002/ldr.3886
Mardegan, S. F., de Castro, A. F., Noirtin Freitas Chaves, S. S., dos Santos Freitas, R. S., Sena Avelar, M., & Oliveira Teixeira Filho, F. A. (2022). Organic Farming Enhances Soil Carbon and Nitrogen Dynamics in Oil Palm Crops from Southeast Amazon. Soil Science and Plant Nutrition, 68(1), 104–113. https://doi.org/10.1080/00380768.2022.2031285
Mercer, E. V., Mercer, T. G., & Sayok, A. K. (2014). Effects of forest conversions to oil palm plantations on freshwater macroinvertebrates: a case study from Sarawak, Malaysia. Journal of Land Use Science, 9(3), 260–277. https://doi.org/10.1080/1747423X.2013.786149
Mesa-Pérez, M. A., Echemendía-Pérez, M., Valdés-Carmenate, R., Sánchez-Elías, S., & Guridi-Izquierdo, F. (2016). La macrofauna edáfica, indicadora de contaminación por metales pesados en suelos ganaderos de Mayabeque, Cuba. Pastos y Forrajes, 39(3), 116–124. https://bit.ly/3GGs0Vn
Moebius, B. N., van Es, H. M., Schindelbeck, R. R., Idowu, O. J., Clune, D. J., & Thies, J. E. (2007). Evaluation of laboratory-measured soil properties as indicators of soil physical quality. Soil science, 172(11), 895–912. https://doi.org/10.1097/ss.0b013e318154b520
Moreno-Peñaranda, R., Gasparatos, A., Stromberg, P., Suwa, A., Hadi Pandyaswargo, A., & Puppim de Oliveira, J. A. (2015). Sustainable production and consumption of palm oil in Indonesia: What can stakeholder perceptions offer to the debate? Sustainable Production and Consumption, 4, 16–35. https://doi.org/10.1016/j.spc.2015.10.002
Nadeesha, S., & Weerasinghe T. K. (2016). Effects of oil palm cultivation on the properties of soil in some selected areas of Nagoda divisional secretariat in the Galle district, Sri Lanka. International Journal of Agriculture, Forestry and Plantation, 3, 114–118.
Neumann, D., Heuer, A., Hemkemeyer, M., Martens, R., & Tebbe, C. C. (2014). Importance of soil organic matter for the diversity of microorganism involved in the degradation of organic pollutants. The ISME Journal, 8, 1289–1300. https://doi.org/10.1038/ismej.2013.233
Nwoko, C.I.A., & Ukiwe, L.N. (2016). Physicochemical characteristics of soils treated with palm oil mill effluent in three localities in Imo State, Nigeria. Pure and Applied Chemical Sciences, 4(1), 1–8. http://doi.org/10.12988/pacs.2016.5127
Ocampo-Peñuela, N., Garcia-Ulloa, J., Ghazoul, J., & Etter, A. (2018). Quantifying impacts of oil palm expansion on Colombia’s threatened biodiversity. Biological Conservation, 224, 117–121. https://doi.org/10.1016/j.biocon.2018.05.024
Ogedegbe, O. B. A., & Egwuonwu, I. C. (2014). Biodiversity of soil arthropods in Nigerian Institute for oil palm research (NIFOR), Nigeria. Journal of Applied Sciences and Environmental Management, 18(3), 377–386. https://www.ajol.info/index.php/jasem/article/view/109849
Ogeh, J. S., & Osiomwan, G. E. (2012). Evaluation of the Effect of Oil Palm on some Physical and Chemical Properties of Rhodic paleudults. Nigerian Journal of Basic and Applied Sciences, 20(1), 78–82. https://www.ajol.info/index.php/njbas/article/view/81592
Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2019). FAOSTAT, datos. http://www.fao.org/faostat/es/#data
Paing Tan, N., Keng Wong, M., Yusuyin, Y., Bin Abdu, A., Iwasaki, K., & Tanaka, S. (2014). Soil characteristics in an oil palm field, Central Pahang, Malaysia with special reference to micro sites under different managements and slope positions. Tropical Agriculture Development, 58(4), 146–154. https://doi.org/10.11248/jsta.58.146
Pardo Vargas, L. E., Laurance, W. F., Reuben Clements, G., & Edwards, W. (2015). The impacts of oil palm agriculture on Colombia’s biodiversity: what we know and still need to know. Tropical Conservation Science, 8(3), 828–845. https://doi.org/10.1177/194008291500800317
Pardon, L., Bessou, C., Netelenbos Nelson, P., Dubos, B., Ollivier, J., Marichal, R., Caliman, J. P., & Gabrielle, B. (2016). Key unknowns in nitrogen budget for oil palm plantations. A review. Agronomy for Sustainable Development, 36, Article 20. https://doi.org/10.1007/s13593-016-0353-2
Paterson, R. R. M., & Lima, N. (2017). Climate change affecting oil palm agronomy, and oil palm cultivation increasing climate change, require amelioration. Ecology and Evolution, 8(1), 452–461. https://doi.org/10.1002/ece3.3610
Paterson, R. R. M., Kumar, L., Shabani, F., & Lima, N. (2017). World climate suitability projections to 2050 and 2100 for growing oil palm. The Journal of Agricultural Science, 155(5), 689–702. https://doi.org/10.1017/S0021859616000605
Pereira Mendes, T., Loureiro Benone, N., & Juen, L. (2019). To what extent can oil palm plantations in the Amazon support assemblages of Odonata larvae? Insect Conservation and Diversity, 12(5), 448–458. https://doi.org/10.1111/icad.12357
Pirker, J., Mosnier, A., Kraxner, F., Havlík, P., & Obersteiner, M. (2016). What are the limits to oil palm expansion? Global Environmental Change, 40, 73–81. https://doi.org/10.1016/j.gloenvcha.2016.06.007
Potapov, A. M., Klarner, B., Sandmann, D., Widyastuti, R., & Scheu, S. (2019). Linking size spectrum, energy flux and trophic multifunctionality in soil food webs of tropical land-use systems. Journal of Animal Ecology, 88(12), 1845–1859. https://doi.org/10.1111/1365-2656.13027
Potapov, A., Schaefer, I., Jochum, M., Widyastuti, R., Eisenhauer, N., & Scheu, S. (2021). Oil palm and rubber expansion facilitates earthworm invasion in Indonesia. Biological Invasions, 23, 2783–2795. https://doi.org/10.1007/s10530-021-02539-y
Pulido-Moncada, M., Lozano, Z., Delgado, M., Dumon, M., Van Ranst, E., Lobo, D., Gabriels, D., & Cornelis, W. M. (2018). Using soil organic matter fractions as indicators of soil physical quality. Soil Use and Management, 34(2), 187–196. https://doi.org/10.1111/sum.12414
Rahman, N., Giller, K. E., de Neergaard, A., Magid, J., van de Ven, G., & Bech Bruun, T. (2021). The effects of management practices on soil organic carbon stocks of oil palm plantations in Sumatra, Indonesia. Journal of Environmental Management, 278, Article 111446. https://doi.org/10.1016/j.jenvman.2020.111446
Roundtable on Sustainable Palm Oil. (2018). Principles and criteria for sustainable palm oil production. https://rspo.org/library/lib_files/preview/1079
Sahat, S., Yusop, Z., Askari, M., & Ziegler, A. D. (2016). Estimation of soil erosion rates in oil palm plantation with different land cover. IOP Conference Series: Materials Science and Engineering, 136, Article 012086. https://doi.org/10.1088/1757-899X/136/1/012086
Sahid, I., Hamzah, A., & Aris, P. M. (1992). Effects of paraquat and alachlor on soil microorganisms in peat soil. Pertanika, 15 (2), 121–125. https://core.ac.uk/download/pdf/42990255.pdf
Salamat, S., Hassan, M., Shirai, Y., Mohd. Hanif, A. H., Norizan, M. S., Mohd Zainudin, M. H., Mustapha, N. A., Mat Isa, M. N., & Abu Bakar, M. F. (2021). Effect of inorganic fertilizer application on soil microbial diversity in an oil palm plantation. BioResources, 16(2), 2279–2302. https://bit.ly/3OydReT
Samedani, B., Juraimi, A. S., Rafii, M. Y., Sheikh Awadz, S. A., Anwar, M. P., & Anuar, A. R. (2015). Effect of cover crops on weed suppression in oil palm plantation. International Journal of Agriculture & Biology, 17(2), 251–260. http://fspublishers.org/published_papers/41353_..pdf
Santacruz de León, E. E., Morales Guerrero, S., & Palacio Muñoz, V. E. (2014). Políticas de reconversión productiva de la palma de aceite. In B. Mata García (Ed.), Palma de aceite en México: Política gubernamental e innovación tecnológica (pp. 31–65). Centro de Estudios para el Desarrollo Rural Sustentable y la Soberanía Alimentaria.
Santorufo, L., Van Gestel, C. A., Rocco, A., & Maisto, G. (2012). Soil invertebrates as bioindicators of urban soil quality. Environmental Pollution, 161, 57–63. https://doi.org/10.1016/j.envpol.2011.09.042
Santos da Silva, C. S., Furtado de Mendonça, B. A., Gervasio Pereira, M., Gomes de Araújo, E. J., & Castellani, D. C. (2018). Spatial dependency and correlation of properties of soil cultivated with oil palm, Elaeis guineensis, in agroforestry systems in the eastern Brazilian Amazon. Acta Amazonica, 48(4), 280–289. https://doi.org/10.1590/1809-4392201704423
Satriawan, H., Masrul Harahap, E., Rahmawaty & Karim, A. (2015). Effectiveness of soil conservation to erosion control on several land use types. Agriculture (Pol’nohospodárstvo), 61(2), 61–68. https://sciendo.com/article/10.1515/agri-2015-0011
Savilaakso, S., Garcia, C., Garcia-Ulloa, J., Ghazoul, J., Groom, M., Guariguata, M. R., Laumonier, Y., Nasi, R., Petrokofsky, G., Snaddon, J., & Zrust, M. (2014). Systematic review of effects on biodiversity from oil palm production. Environmental Evidence, 3, Article 4. https://doi.org/10.1186/2047-2382-3-4
Sheil, D., Casson, A., Meijaard, E., van Noordwjik, M., Gaskell, J., Sunderland-Groves, J., Wertz, K., & Kanninen, M. (2009). The impacts and opportunities of oil palm in Southeast Asia: What do we know and what do we need to know?. Center for International Forestry Research. https://doi.org/10.17528/cifor/002792
Servicio de Información Agroalimentaria y Pesquera. (2019). Anuario estadístico de la producción agrícola. https://nube.siap.gob.mx/cierreagricola/
Singh, R. P., Embrandiri, A., Ibrahim, M. H., & Esa, N. (2011). Management of biomass residues generated from palm oil mill: Vermicomposting a sustainable option. Resources, Conservation and Recycling, 55(4), 423–434. https://doi.org/10.1016/j.resconrec.2010.11.005
Singh, R. P., Hakimi Ibrahim, M. H., Esa, N., & Iliyana, M. S. (2010). Composting of waste from palm oil mill: a sustainable waste management practice. Reviews in Environmental Science and Bio/Technology, 9, 331–344. https://doi.org/10.1007/s11157-010-9199-2
Sivakumar, M. V. K., & Stefanski, R. (2007). Climate and land degradation – An overview. In M. V. K. Sivakumar, & N. Ndiang’ui (Eds.), Climate and land degradation (pp. 105–135). Springer. https://doi.org/10.1007/978-3-540-72438-4_6
Subramaniam, V., Hashim, Z., Kheang Loh, S., & Aziz Astimar, A. (2020). Assessing water footprint for the oil palm supply chain- a cradle to gate study. Agricultural Water Management, 237, Article 106184. https://doi.org/10.1016/j.agwat.2020.106184
Tao, H. H., Slade, E. M., Willis, K. J., Caliman, J. P., & Snaddon, J. L. (2016). Effects of soil management practices on soil fauna feeding activity in an Indonesian oil palm plantation. Agriculture, Ecosystems & Environment, 218, 133–140. https://doi.org/10.1016/j.agee.2015.11.012
Tao, H. H., Snaddon, J. L., Slade, E. M., Caliman, J. P., Widodo, R. H., & Willis, K. J. (2017). Long-term crop residue application maintains oil palm yield and temporal stability of production. Agronomy for Sustainable Development, 37, Article 33. https://doi.org/10.1007/s13593-017-0439-5
Tao, H. H., Snaddon, J. L., Slade, E. M., Henneron, L., Caliman, J. P., & Willis, K. J. (2018). Application of oil palm empty fruit bunch effects on soil biota and functions: A case study in Sumatra, Indonesia. Agriculture, Ecosystems & Environment, 256, 105–113. https://doi.org/10.1016/j.agee.2017.12.012
Teuscher, M., Gérard, A., Brose, U., Buchori, D., Clough, Y., Ehbrecht, M., Hölscger, D., Irawan, B., Sundawati, L., Wollni, M., & Kreft, H. (2016). Experimental biodiversity enrichment in oil-palm-dominated landscapes in Indonesia. Frontiers in Plant Science, 7, Article 1538. https://doi.org/10.3389/fpls.2016.01538
Tuma, J., Fleiss, S., Eggleton, P., Frouz, J., Klimes, P., Lewis, O. T. Yusah, K. M., & Fayle, T. M. (2019). Logging of rainforest and conversion to oil palm reduces bioturbator diversity but not levels of bioturbation. Applied Soil Ecology, 144, 123–133. https://doi.org/10.1016/j.apsoil.2019.07.002
Vallejo-Quintero, V. E. (2013). Importancia y utilidad de la evaluación de la calidad de suelos mediante el componente microbiano: experiencias en sistemas silvopastoriles. Colombia Forestal, 16(1), 83–99. https://doi.org/10.14483/udistrital.jour.colomb.for.2013.1.a06
Velázquez-González, I. U., Pérez-Hernández, H., Sañudo-Torres, R. R., Ruelas-Ayala, R. D., & Felix-Herrán, J. A. (2013). Impacto del cultivo de palma de aceite (Elaeis guineensis Jacq.) sobre las propiedades físicas y químicas del suelo en la localidad de la Alianza, Mapastepec, Chiapas. Revista Forestal Baracoa, 32(2), 86–91.
Vijay, V., Pimm, S. L., Jenkins, C. N., & Smith, S. J. (2016). The impacts of oil palm on recent deforestation and biodiversity loss. PLoS ONE, 11(7), Article e0159668. https://doi.org/10.1371/journal.pone.0159668
Vinhal-Freitas, I. C., Corrêa, G. F., Wendling, B., Bobuľská, L., & Ferreira, A. S. (2017). Soil textural class plays a major role in evaluating the effects of land use on soil quality indicators. Ecological Indicators, 74, 182–190. https://doi.org/10.1016/j.ecolind.2016.11.020
Wilcove, D. S., Giam, X., Edwards, D. P., Fisher, B., & Pin Koh, L. (2013). Navjot’s nightmare revisited: logging, agriculture, and biodiversity in Southeast Asia. Trends in Ecology & Evolution, 28(9), 531–540. https://doi.org/10.1016/j.tree.2013.04.005
Woittiez, L. S., van Wijk, M. T., Slingerland, M., van Noordwijk, M., & Giller, K. E. (2017). Yield gaps in oil palm: A quantitative review of contributing factors. European Journal of Agronomy, 83, 57–77. https://doi.org/10.1016/j.eja.2016.11.002
Zainuddin, N., Fahmi Keni, M., Syed Ibrahim, S. A., & Mohd Masri, M. M. (2022). Effect of integrated biofertilizers with chemical fertilizers on the oil palm growth and soil microbial diversity. Biocatalysis and Agricultural Biotechnology, 39, Article 102237. https://doi.org/10.1016/j.bcab.2021.102237
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Hermes Pérez Hernández, Marcos Pérez Sato
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos morales de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución, no comercial y sin obra derivada de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista, no se puede hacer uso de la obra con propósitos comerciales y no se puede utilizar las publicaciones para remezclar, transformar o crear otra obra.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).