Especies de Aspergillus asociadas a granos de maní (Arachis hypogaea L.) y frijol común (Phaseolus vulgaris L.) cultivados en Costa Rica
DOI:
https://doi.org/10.15517/am.v33iEspecial.50810Palabras clave:
hongos, micotoxinas, poscosecha, atoxigénicosResumen
Introducción. El frijol común (Phaseolus vulgaris L.) y el maní (Arachis hypogaea L.) son leguminosas consumidas en países en vías de desarrollo. Sin embargo, estos granos pueden estar contaminados con Aspergillus, un género de hongo que incluye especies productoras de micotoxinas. Objetivo. Identificar las especies de Aspergillus que colonizan los granos de frijol y maní en Costa Rica e identificar cepas atoxigénicas de A. flavus. Materiales y métodos. Se recolectaron 83 muestras de granos de frijol común y 19 muestras de maní durante los años 2019 y 2020, en regiones productoras de estos cultivos en Costa Rica. El total de muestras se utilizaron para aislar e identificar las especies de Aspergillus, mediante secuenciación parcial de los genes ITS (espaciador transcrito interno) y cmd (calmodulina). También se identificaron cepas atoxigénicas de A. flavus por métodos químicos y moleculares. Resultados. Un 46 % y 32 % de las muestras recolectadas de frijol y maní, respectivamente, presentaron contaminación con Aspergillus spp. Se obtuvieron 85 aislamientos de Aspergillus en frijol, la mayoría pertenecientes a las especies A. flavus y A. niger. La mayor parte de los aislamientos de A. flavus se recuperaron de las variedades de frijol Cabécar (quince aislamientos) y Nambí (siete aislamientos), mientras que A. niger se aisló, en su mayoría, de la variedad Cabécar (once aislamientos). En el caso del maní, se obtuvieron trece aislamientos, la mayoría de ellos identificados como A. niger. No se encontraron cepas atoxigénicas en maní, sin embargo, en frijol se encontraron cinco cepas de A. flavus con esta característica. Conclusiones. El presente estudio demostró la diversidad de especies de Aspergillus que colonizan los granos de frijoles y maní en Costa Rica. La mayoría de las especies aisladas son productoras de micotoxinas que causan efectos adversos en la salud humana.
Descargas
Citas
Abdel-Azeem, A. M., Abdel-Azeem, M. A., Abdul-Hadi, S. Y., & Darwish, A. G. (2019). Aspergillus: Biodiversity, ecological significances, and industrial applications. In A. N. Yadav, S. Mishra, S. Singh, & A. Gupta (Eds.), Recent Advancement in White Biotechnology Through Fungi: Volume 1: Diversity and Enzymes Perspectives (pp. 121–179). Springer International Publishing. https://doi.org/10.1007/978-3-030-10480-1_4
Acuña-Gutiérrez, C., Schock, S., Jiménez, V. M., & Müller, J. (2021). Detecting fumonisin B1 in black beans (Phaseolus vulgaris L.) by near-infrared spectroscopy (NIRS). Food Control, 130, Article 108335. https://doi.org/10.1016/j.foodcont.2021.108335
Adeyeye, S. A. O. (2016). Fungal mycotoxins in foods: A review. Cogent Food & Agriculture, 2(1), Article 1213127. https://doi.org/10.1080/23311932.2016.1213127
Agbetiameh, D., Ortega-Beltran, A., Awuah, R. T., Atehnkeng, J., Islam, M.-S., Callicott, K. A., Cotty, P. J., & Bandyopadhyay, R. (2019). Potential of atoxigenic Aspergillus flavus vegetative compatibility groups associated with maize and groundnut in Ghana as biocontrol agents for aflatoxin management. Frontiers in Microbiology, 10, Article 2069. https://doi.org/10.3389/fmicb.2019.02069
Akram, N. A., Shafiq, F., & Ashraf, M. (2018). Peanut (Arachis hypogaea L.): A prospective legume crop to offer multiple health benefits under changing climate. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1325–1338. https://doi.org/10.1111/1541-4337.12383
Asare Bediako, K., Ofori, K., Offei, S. K., Dzidzienyo, D., Asibuo, J. Y., & Adu Amoah, R. (2019). Aflatoxin contamination of groundnut (Arachis hypogaea L.): Predisposing factors and management interventions. Food Control, 98, 61–67. https://doi.org/10.1016/j.foodcont.2018.11.020
Bailly, S., Mahgubi, A. E., Carvajal-Campos, A., Lorber, S., Puel, O., Oswald, I. P., Bailly, J. D., & Orlando, B. (2018). Occurrence and identification of Aspergillus section Flavi in the context of the emergence of aflatoxins in French maize. Toxins, 10(12), Article 525. https://doi.org/10.3390/toxins10120525
Blair, M. W., González, L. F., Kimani, P. M., & Butare, L. (2010). Genetic diversity, inter-gene pool introgression and nutritional quality of common beans (Phaseolus vulgaris L.) from Central Africa. Theoretical and Applied Genetics, 121(2), 237–248. https://doi.org/10.1007/s00122-010-1305-x
Brandfass, C., & Karlovsky, P. (2008). Upscaled CTAB-based DNA extraction and real-time PCR assays for Fusarium culmorum and F. graminearum DNA in plant material with reduced sampling error. International Journal of Molecular Sciences, 9(11), 2306–2321. https://doi.org/10.3390/ijms9112306
Caceres, I., Al Khoury, A., El Khoury, R., Lorber, S., Oswald, I. P., El Khoury, A., Atoui, A., Puel, O., & Bailly, J. D. (2020). Aflatoxin biosynthesis and genetic regulation: A review. Toxins, 12(3), Article 150. https://doi.org/10.3390/toxins12030150
Chang, P. K., Yu, J., & Yu, J. H. (2004). AflT, a MFS transporter-encoding gene located in the aflatoxin gene cluster, does not have a significant role in aflatoxin secretion. Fungal Genetics and Biology, 41(10), 911–920. https://doi.org/10.1016/j.fgb.2004.06.007
Chávez-Servia, J., Heredia-García, E., Mayek-Pérez, N., Aquino-Bolaños, E. N., Hernández-Delgado, S., Carrillo-Rodríguez, J. C., Gill-Langarica, H. R., & Vera-Guzmán, A. M. (2016). Diversity of common bean (Phaseolus vulgaris L.) landraces and the nutritional value of their grains. In A. Kumar Goyal (Ed.), Grain legumes. IntechOpen. https://doi.org/10.5772/63439
Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2016). GenBank. Nucleic Acids Research, 44(D1), D67–D72. https://doi.org/10.1093/nar/gkv1276
Consejo Nacional de Producción. (2017, febrero 24). Uso de semilla certificada de frijol continúa ascenso. elmundo.cr. https://www.elmundo.cr/costa-rica/uso-de-semilla-certificada-de-frijol-continua-en-ascenso/
Eskola, M., Kos, G., Elliott, C. T., Hajšlová, J., Mayar, S., & Krska, R. (2020). Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Critical Reviews in Food Science and Nutrition, 60(16), 2773–2789. https://doi.org/10.1080/10408398.2019.1658570
Frisvad, J. C., Larsen, T. O., Thrane, U., Meijer, M., Varga, J., Samson, R. A., & Nielsen, K. F. (2011). Fumonisin and ochratoxin production in industrial Aspergillus niger strains. PLOS ONE, 6(8), Article e23496. https://doi.org/10.1371/journal.pone.0023496
Hong, S. B., Go, S. J., Shin, H. D., Frisvad, J. C., & Samson, R. A. (2005). Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia, 97(6), 1316–1329. https://doi.org/10.1080/15572536.2006.11832738
Houbraken, J., Kocsubé, S., Visagie, C. M., Yilmaz, N., Wang, X. C., Meijer, M., Kraak, B., Hubka, V., Bensch, K., Samson, R. A., & Frisvad, J. C. (2020). Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Studies in Mycology, 95, 5–169. https://doi.org/10.1016/j.simyco.2020.05.002
Instituto Meteorológico Nacional. (s.f.). Pronóstico del tiempo por regiones. Datos climáticos. Recuperado el 8 de agosto, 2022 de https://www.imn.ac.cr/es/web/imn/mapa#A5280:form:panelInfo
Jayaprakash, A., Thanmalagan, R. R., Roy, A., Arunachalam, A., & Lakshmi, P. (2019). Strategies to understand Aspergillus flavus resistance mechanism in Arachis hypogaea L. Current Plant Biology, 20, Article 100123. https://doi.org/10.1016/j.cpb.2019.100123
Katsurayama, A. M., Martins, L. M., Iamanaka, B. T., Fungaro, M. H. P., Silva, J. J., Frisvad, J. C., Pitt, J. I., & Taniwaki, M. H. (2018). Occurrence of Aspergillus section Flavi and aflatoxins in Brazilian rice: From field to market. International Journal of Food Microbiology, 266, 213–221. https://doi.org/10.1016/j.ijfoodmicro.2017.12.008
Khan, R., Ghazali, F. M., Mahyudin, N. A., & Samsudin, N. I. P. (2021). Aflatoxin biosynthesis, genetic regulation, toxicity, and control strategies: A review. Journal of Fungi, 7(8), Article 606. https://doi.org/10.3390/jof7080606
Klich, M. A. (2002). Identification of common Aspergillus species (1st ed.). Centraalbureau Voor Schimmelcultures.
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
Leslie, J. F., & Summerell, B. A. (2006). The Fusarium laboratory manual (1st ed.). John Wiley & Sons.
López Sedo, V. (2017, marzo 1). Una variedad de frijol resistente al cambio climático llega a Costa Rica. Ojo al Clima. https://ojoalclima.com/cientificos-ucr-participan-creacion-variedad-frijol-resistente-al-cambio-climatico/
Marchese, S., Polo, A., Ariano, A., Velotto, S., Costantini, S., & Severino, L. (2018). Aflatoxin B1 and M1: Biological properties and their involvement in cancer development. Toxins, 10(6), Article 214. https://doi.org/10.3390/toxins10060214
Mohammed, A., & Chala, A. (2014). Incidence of Aspergillus contamination of groundnut (Arachis hypogaea L.) in Eastern Ethiopia. African Journal of Microbiology Research, 8(8), 759–765. https://doi.org/10.5897/AJMR12.2078
Moretti, A., & Susca, A. (Eds.). (2017). Mycotoxigenic fungi: Methods and protocols (Vol. 1542). Springer New York. https://doi.org/10.1007/978-1-4939-6707-0
Omotayo, O. P., Omotayo, A. O., Mwanza, M., & Babalola, O. O. (2019). Prevalence of mycotoxins and their consequences on human health. Toxicological Research, 35(1), 1–7. https://doi.org/10.5487/TR.2019.35.1.001
Ostry, V., Malir, F., Toman, J., & Grosse, Y. (2017). Mycotoxins as human carcinogens-the IARC Monographs classification. Mycotoxin Research, 33, 65–73. https://doi.org/10.1007/s12550-016-0265-7
Palencia, E. R., Hinton, D. M., & Bacon, C. W. (2010). The black Aspergillus species of maize and peanuts and their potential for mycotoxin production. Toxins, 2(4), 399–416. https://doi.org/10.3390/toxins2040399
Perrone, G., & Gallo, A. (2017). Aspergillus species and their associated mycotoxins. In A. Moretti, & A. Susca (Eds.), Mycotoxigenic fungi: Methods and protocols (pp. 33–49). Springer. https://doi.org/10.1007/978-1-4939-6707-0_3
Rao, K. R., Vipin, A. V., & Venkateswaran, G. (2020). Molecular profile of non-aflatoxigenic phenotype in native strains of Aspergillus flavus. Archives of Microbiology, 202(5), 1143–1155. https://doi.org/10.1007/s00203-020-01822-1
Rawal, V., & Navarro, D. K. (2019). The global economy of pulses. Food and Agriculture Organization. https://doi.org/10.4060/I7108EN
Samson, R. A., Visagie, C. M., Houbraken, J., Hong, S. B., Hubka, V., Klaassen, C. H. W., Perrone, G., Seifert, K. A., Susca, A., Tanney, J. B., Varga, J., Kocsubé, S., Szigeti, G., Yaguchi, T., & Frisvad, J. C. (2014). Phylogeny, identification and nomenclature of the genus Aspergillus. Studies in Mycology, 78, 141–173. https://doi.org/10.1016/j.simyco.2014.07.004
Santos-Ciscon, B. A., van Diepeningen, A., Machado, J. da C., Dias, I. E., & Waalwijk, C. (2019). Aspergillus species from Brazilian dry beans and their toxigenic potential. International Journal of Food Microbiology, 292, 91–100. https://doi.org/10.1016/j.ijfoodmicro.2018.12.006
Sinkovič, L., Pipan, B., Sinkovič, E., & Meglič, V. (2019). Morphological seed characterization of common (Phaseolus vulgaris L.) and runner (Phaseolus coccineus L.) bean germplasm: A Slovenian gene bank example. BioMed Research International, 2019, Article e6376948. https://doi.org/10.1155/2019/6376948
Somma, S., Perrone, G., & Logrieco, A. F. (2012). Diversity of black Aspergini and mycotoxin risks in grape, wine and dried vine fruits. Phytopathologia Mediterranea, 51(1), 131–147.
Srour, A. Y., Fakhoury, A. M., & Brown, R. L. (2017). Targeting aflatoxin biosynthetic genes. In A. Moretti, & A. Susca (Eds.), Mycotoxigenic fungi: Methods and protocols (pp. 159–171). Springer. https://doi.org/10.1007/978-1-4939-6707-0_10
Stalker, H. T. (1997). Peanut (Arachis hypogaea L.). Field Crops Research, 53(1), 205–217. https://doi.org/10.1016/S0378-4290(97)00032-4
Streit, E., Naehrer, K., Rodrigues, I., & Schatzmayr, G. (2013). Mycotoxin occurrence in feed and feed raw materials worldwide: Long-term analysis with special focus on Europe and Asia. Journal of the Science of Food and Agriculture, 93(12), 2892–2899. https://doi.org/10.1002/jsfa.6225
Telles, A. C., Kupski, L., & Furlong, E. B. (2017). Phenolic compound in beans as protection against mycotoxins. Food Chemistry, 214, 293–299. https://doi.org/10.1016/j.foodchem.2016.07.079
Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. https://doi.org/10.1093/nar/22.22.4673
Toffa, D. D., Mahnine, N., Ouaffak, L., El Abidi, A., El Alaoui Faris, F. Z., & Zinedine, A. (2013). First survey on the presence of ochratoxin A and fungi in raw cereals and peanut available in the Republic of Niger. Food Control, 32(2), 558–562. https://doi.org/10.1016/j.foodcont.2013.01.028
Wei, D., Zhou, L., Selvaraj, J. N., Zhang, C., Xing, F., Zhao, Y., Wang, Y., & Liu, Y. (2014). Molecular characterization of atoxigenic Aspergillus flavus isolates collected in China. Journal of Microbiology, 52(7), 559–565. https://doi.org/10.1007/s12275-014-3629-8
Yin, G., Hua, S. S. T., Pennerman, K. K., Yu, J., Bu, L., Sayre, R. T., & Bennett, J. W. (2018). Genome sequence and comparative analyses of atoxigenic Aspergillus flavus WRRL 1519. Mycologia, 110(3), 482–493. https://doi.org/10.1080/00275514.2018.1468201
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos morales de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución, no comercial y sin obra derivada de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista, no se puede hacer uso de la obra con propósitos comerciales y no se puede utilizar las publicaciones para remezclar, transformar o crear otra obra.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).