El efecto del procesamiento y almacenamiento en la miel Klanceng (Tetragonula laeviceps)

Autores/as

DOI:

https://doi.org/10.15517/am.v34i2.52131

Palabras clave:

calidad de la miel, calentamiento, invertasa, diastasa

Resumen

Introducción. La miel Klanceng (Tetragonula laeviceps) es muy demandada por sus beneficios. No hay información sobre la fecha de caducidad de la miel Klanceng. Objetivo. Predecir la vida útil de la miel Klanceng mediante la evaluación del efecto del calentamiento (40 ºC / 48 h y 70 ºC / 7 h) y el almacenamiento durante dos años. Materiales y métodos. El análisis se llevó a cabo tres veces (2020, 2021 y 2022) en el Laboratorio de la Agencia Nacional de Investigación de Innovación, Yakarta, Indonesia. Se tomaron muestras de miel Klanceng (Tetragonula laeviceps) de una granja de abejas en Magetan, Java Oriental, Indonesia. La muestra (5 kg) se dividió en 3: sin proceso de calentamiento (UT), calentamiento a 40 °C / 48 h (T1) y calentamiento a 70 °C / 7 h (T2). Luego se analizaron HMF, diastasa, invertasa, fosfatasa ácida (AP), glucosa oxidasa (GO), DPPH, absorbancia y actividad fenólica a los 0, 12 y 24 meses. Resultados. Los resultados mostraron que el calentamiento corto a alta temperatura (70 °C / 7 h) tuvo un mayor impacto en la disminución de la actividad enzimática en comparación con el calentamiento prolongado a baja temperatura (40 °C / 48 h). El almacenamiento tuvo un impacto significativo en el aumento de 5-hidroximetil (furano)-2-carbaldehído (HMF) en comparación con el calentamiento. Durante el almacenamiento (24 meses) el valor de HMF superó el límite máximo. Conclusiones. El valor de HMF (55,33 ± 0,57 mg/kg) superó el límite máximo permitido (máximo 40 ppm), esto se debió al efecto significativo del calentamiento en T2 y el proceso de almacenamiento. La vida útil de la miel Klanceng fue de dos años, siempre que no se calentara a altas temperaturas (70 °C).

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abou-Shaara, H. F., Owayss, A. A., Ibrahim, Y. Y., & Basuny, N. K. (2017). A review of impacts of temperature and relative humidity on various activities of honey bees. Insectes Sociaux, 64(4), 455–463. https://doi.org/10.1007/s00040-017-0573-8

Agus, A., Agussalim, N., Umami, N., & Budisatria, I. G. S. (2019). Evaluation of antioxidant activity, phenolic, flavonoid and vitamin C content of several honeys produced by the Indonesian stingless bee: Tetragonula laeviceps. Livestock Research for Rural Development, 31(10), Article 152. http://www.lrrd.org/lrrd31/10/aguss31152.html

Agus, A., Agussalim, Sahlan, M., & Sabir, A. (2021). Honey sugars profile of stingless bee Tetragonula laeviceps (Hymenoptera: Meliponinae). Biodiversitas, 22(11), 5205–5210. https://doi.org/10.13057/biodiv/d221159

Agussalim, Agus, A., Umami, N., & Suparta Budisatria, I. G. (2017, September 12-14). The effect of daily activities stingless bees of Trigona sp. on honey production. In Universitas Gadjah Mada Yogyakarta (Ed.), Proceedings of the 7th International Seminar on Tropical Animal Production (pp. 223–227). Indonesian Society for Sustainable Tropical Animal Production. https://journal.ugm.ac.id/istapproceeding/article/viewFile/29838/17967

Akalın, H., Bayram, M., & Ertan Anlı, R. (2017). Determination of some individual phenolic compounds and antioxidant capacity of mead produced from different types of honey. Journal of The Institute of Brewing, 123(1), 167–174. https://doi.org/10.1002/jib.396

Akhmazillah Fauzi, N., & Mehdi Farid, M. (2017). High pressure processed Manuka honey: Change in nutritional and rheological properties over 1-year storage. Journal of Food Processing and Preservation, 41(4), Article e13085. https://doi.org/10.1111/jfpp.13085

Akhmazillah, M. F. N., Farid, M. M., & Silva, F. V. M. (2013). High pressure processing (HPP) of honey for the improvement of nutritional value. Innovative Food Science and Emerging Technologies, 20, 59–63. https://doi.org/10.1016/j.ifset.2013.06.012

Al Kafaween, M. A., Hilmi, A. B. M., Khan, R. S., Bouacha, M., & Amonov, M. (2019). Effect of Trigona honey on Escherichia coli cell culture growth: In vitro study. Journal of Apitherapy, 5(2), 10–17. https://www.japitherapy.com/abstract/effect-of-trigona-honey-on-escherichia-coli-cell-culture-growth-in-vitro-study-47330.html

Al-kafaween, M. A., Hilmi, A. B. M., Jaffar, N., Al-Jamal, H. A. N., Zahri, M. K., & Jibril, F. I. (2020). Antibacterial and antibiofilm activities of Malaysian Trigona honey against Pseudomonas aeruginosa ATCC 10145 and Streptococcus pyogenes ATCC 19615. Jordan Journal of Biological Science, 13(1), 69–76. https://jjbs.hu.edu.jo/files/vol13/n1/Paper%20Number%2011.pdf

Al-Rubaie, W. K., & Al-Fekaiki, D. F. (2022). Enzymes activity study of multiple types of Iraqi honey. Journal of Pharmaceutical Negative Results, 13(Special 2), 255–260. https://doi.org/10.47750/pnr.2022.13.S02.36

Amariei, S., Norocel, L., & Scripcă, L. A. (2020). An innovative method for preventing honey crystallization. Innovative Food Science and Emerging Technologies, 66, Article 102481. https://doi.org/10.1016/j.ifset.2020.102481

Association of Official Analytical Chemists. (2016). Official methods of analysis of AOAC International (20th ed.). AOAC International.

Beretta, G., Granata, P., Ferrero, M., Orioli, M., & Facino, R. M. (2005). Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Analytica Chimica Acta, 533(2), 185–191. https://doi.org/10.1016/j.aca.2004.11.010

Cao, W., Zhang, J. J., Liu, C. Y., Bai, W. S., & Cheng, N. (2020). A modified Folin-Ciocalteu method for the microdetermination of total phenolic content in honey. International Food Research Journal, 27(3), 576–584. https://bit.ly/3OqxKoc

Castro-Vázquez, L., Alañon, M. E., Gonzalez-Viñas, M. A., & Pérez-Coello, M. S. (2012). Changes in the volatile fractions and sensory properties of heather honey during storage under different temperatures. European Food Research and Technology, 235(2), 185–193. https://doi.org/10.1007/s00217-012-1756-1

Cozmuta, A. M., Cozmuta, L. M., Varga, C., Marian, M., & Peter, A. (2011). Effect of thermal processing on quality of polyfloral honey. Romanian Journal of Food Science, 1(1), 45–52.

Erdtman, G. (1954). An introduction to pollen analysis, Waltham, Mass. Chronica Botanica Company.

Fatima, I. J., Mohd Hilm, A. B., Salwani, I., & Lavaniya, M. (2018). Physicochemical characteristics of malaysian stingless bee honey from trigona species. IIUM Medical Journal Malaysia, 17(1), Article 1030. https://doi.org/10.31436/imjm.v17i1.1030

Haouam, L., Dailly, H., Bruneau, E., & Tahar, A. (2019). The quality of honeys influenced by the traditional heating method. Journal of Microbiology, Biotechnology and Food Sciences, 8(6), 1276–1280. https://doi.org/10.15414/jmbfs.2019.8.6.1276-1280

Indonesian National Standard. (2021). SNI-3545-2013. SNI untuk Jamin Kualitas Mutu Maadu. https://bit.ly/3UNQdgx

International Honey Commission (Ed.). (2009). Harmonised methods of the International Honey Commision. http://www.ihc-platform.net/ihcmethods2009.pdf

Karabournioti, S., & Zervalaki, P. (2001). The effect of heating on honey HMF and invertase. Apiacta, 36(4), 177–181.

Kekeçoğlu, M., Çaprazlı, T., Çalışkan, E., & Uğraş, S. (2022). Determination of therapeutic values of Düzce / Yığılca honeys by underlining overlooked parameters. Turkish Journal of Agriculture - Food Science and Technology, 10(2), 299–308. https://doi.org/10.24925/turjaf.v10i2.299-308.4823

Machado De-Melo, A. A., de Almeida-Muradian, L. B., Sancho, M. T., & Pascual-Maté, A. (2018). Composición y propiedades de la miel de Apis mellifera: una revisión. Journal of Apicultural Research, 57(1), 5–37. https://doi.org/10.1080/00218839.2017.1338444

Makhloufi, C., Taïbi, K., & Ait Abderrahim, L. (2020). Characterization of invertase and diastase activities, 5-hydroxymethylfurfural content and hydrogen peroxide production of some Algerian honeys. Iranian Journal of Science and Technology, Transactions A: Science, 44(5), 1295–1302. https://doi.org/10.1007/s40995-020-00936-x

Maurizio, A. (1975). In honey: A comprehensive survey. Heinemann, London.

Missio da Silva, P., Valdemiro Gonzaga, L., Stremel de Azevedo, M., Biluca, F. C., Schulz, M., Oliveira Costa, A. C., & Fett, R. (2020). Stability of volatile compounds of honey during prolonged storage. Journal of Food Science and Technology, 57, 1167–1182. https://doi.org/10.1007/s13197-019-04163-0

Molyneux, P. (2004). The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26(2), 211–219. https://sjst.psu.ac.th/article.php?art=214

Nagai, T., Kai, N., Tanoue, Y., & Suzuki, N. (2018). Chemical properties of commercially available honey species and the functional properties of caramelization and Maillard reaction products derived from these honey species. Journal of Food Science and Technology, 55(2), 586–597. https://doi.org/10.1007/s13197-017-2968-y

Ng, W. J., Chan, Y. J., Lau, Z. K., Lye, P. Y., & Ee, K. Y. (2017). Antioxidant properties and inhibitory effects of trigona honey against staphylococcus aureus planktonic and biofilm cultures. International Journal of GEOMATE, 13(37), 28–33. http://doi.org/10.21660/2017.37.2703

Nguyen, L. T., Balasubramaniam, V. M., & Sastry, S. K. (2012). Determination of in-situ thermal conductivity, thermal diffusivity, volumetric specific heat and isobaric specific heat of selected foods under pressure. International Journal of Food Properties, 15(1), 169–187. https://doi.org/10.1080/10942911003754726

Nugroho, R. B., & Soesilohadi, H. (2014). Identifikasi Macam Sumber Pakan Lebah Trigona sp (Hymenoptera: Apidae) di Kabupaten Gunungkidu. BioMedika, 7(2), 42–45. http://ejurnal.setiabudi.ac.id/ojs/index.php/biomedika/article/view/184

Oddo, L. P., Heard, T. A., Rodríguez-Malaver, A., Pérez, R. A., Fernández-Muiño, M., Sancho, M. T., Sesta, G., Lusco, L., & Vit, P. (2008). Composition and antioxidant activity of Trigona carbonaria honey from Australia. Journal of Medicinal Food, 11(4), 789–794. https://doi.org/10.1089/jmf.2007.0724

Önür, İ., Misra, N. N., Barba, F. J., Putnik, P., Lorenzo, J. M., Gökmen, V., & Alpas, H. (2018). Effects of ultrasound and high pressure on physicochemical properties and HMF formation in Turkish honey types. Journal of Food Engineering, 219, 129–136. https://doi.org/10.1016/j.jfoodeng.2017.09.019

Pasias, I. N., Kiriakou, I. K., Kaitatzis, A., Koutelidakis, A. E., & Proestos, C. (2018). Effect of late harvest and floral origin on honey antibacterial properties and quality parameters. Food Chemistry, 242, 513–518. https://doi.org/10.1016/j.foodchem.2017.09.083

Pohl, P., Sergiel, I., & Stecka, H. (2009). Determination and fractionation of metals in honey. Critical Reviews in Analytical Chemistry, 39(4), 276–288. https://doi.org/10.1080/10408340903001250

Sabir, A., Agus, A., & Sahlan, M. (2021). The minerals content of honey from stingless bee Tetragonula laeviceps from different regions in Indonesia. Livestock Research for Rural Development, 33(2), Article 22. http://www.lrrd.org/lrrd33/2/aguss3322.html

Samborska, K., Langa, E., & Bakier, S. (2015). Changes in the physical properties of honey powder during storage. International Journal of Food Science & Technology, 50(6), 1359–1365. https://doi.org/10.1111/ijfs.12797

Singh, I., & Singh, S. (2018). Honey moisture reduction and its quality. Journal of Food Science and Technology, 55(10), 3861–3871. https://doi.org/10.1007/s13197-018-3341-5

Syam, Y., Usman, A. N., Natzir, R., Rahardjo, S. P., Hatta, M., Sjattar, E. L., Saleh, A., & Sa, M. (2016). Nutrition and pH of Trigona honey from Masamba, South Sulawesi, Indonesia. International Journal of Sciences: Basic and Applied Research, 27(1), 32–36. https://gssrr.org/index.php/JournalOfBasicAndApplied/article/view/5697

Tomazic, B. B. (2001). Physicochemical principles of cardiovascular calcification. Zeitschrift Für Kardiologie, 90(3), 68–80. https://doi.org/10.1007/s003920170046

Tosi, E. A., Ré, E., Lucero, H., & Bulacio, L. (2004). Effect of honey high-temperature short-time heating on parameters related to quality, crystallisation phenomena and fungal inhibition. LWT - Food Science and Technology, 37(6), 669–678. https://doi.org/10.1016/j.lwt.2004.02.005

Trinder, P. (1969). Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Annals of Clinical Biochemistry, 6(1), 24–27. https://doi.org/10.1177/000456326900600108

Von Der Ohe, W., Oddo, L. P., Piana, M. L., Morlot, M., & Martin, P. (2004). Harmonized methods of melissopalynology. Apidologie, 35(Suppl. 1), S18–S25. https://doi.org/10.1051/apido:2004050

Vorlova, L., & Pridal, A. (2002). Invertase and diastase activity in honeys of Czech provenience. Acta Universitatis Agriculturae et Silviculturae Sbornik Mendelovy Zemedelske a Lesnicke Mendelianae Brunensis, 5(8), 57–66.

Wingenroth, M. C. (2001 October 28 - November 1). Honey types and pollen grains of Asuncion Lavalle, Mendoza, Argentina, vegetal origin and possible management of the beehive production. 37th International Apicultural Congress, Durban, South Africa.

Zulkan Jayadi, L., & Susandarini, R. (2020). Melissopalynological analysis of honey produced by two species of stingless bees in Lombok Island, Indonesia. Nusantara Bioscience, 12(2), 97–108. https://doi.org/10.13057/nusbiosci/n120203

Publicado

2023-03-27

Cómo citar

Budianto, B., Kusmardini, D., Feri, Z. O., Arifin, M. J., Suparmi, A., & Kristiani, K. (2023). El efecto del procesamiento y almacenamiento en la miel Klanceng (Tetragonula laeviceps). Agronomía Mesoamericana, 34(2), 52131. https://doi.org/10.15517/am.v34i2.52131