Radiosensibilidad de tres variedades de tomate (Solanum lycopersicum L.) irradiadas con rayos gamma de Cobalto-60

Autores/as

DOI:

https://doi.org/10.15517/am.2024.54329

Palabras clave:

mutación, variabilidad genética, dosis mutagénica, irradiación

Resumen

Introducción. El tomate (Solanum lycopersicum L.) es considerado uno de los cultivos más importantes en el mundo. La mejora genética del tomate ha empleado diferentes métodos para generar variabilidad, la inducción de mutaciones es una de las técnicas empleadas en la obtención de variedades mejoradas. El primer paso, en el uso de esta herramienta, es el estudio de radiosensibilidad para determinar la dosis de irradiación a emplear. Objetivo. Determinar la radiosensibilidad y la dosis de rayos gamma de cobalto-60 a emplear en tres variedades de tomate. Materiales y métodos. Esta investigación se desarrolló en enero del año 2020, en el Instituto Nacional de Ciencias Agrícolas de Cuba. Se irradiaron con rayos gamma de Cobalto-60 semillas de tres variedades de tomate, con dosis entre 100 Gy y 900 Gy, con intervalos de dosis de 100 Gy; también se empleó un control sin irradiar. Se evaluaron el porcentaje de germinación, la altura y la sobrevivencia de las plántulas. Resultados. Se observó que a mayores dosis de irradiación se redujo la germinación, la sobrevivencia y la altura de las plántulas. Las variedades IDIAP T-7 e IDIAP T-9 redujeron su germinación a la dosis de 400 Gy y el cultivar DINA RPs a los 300 Gy. Los genotipos presentaron valores de sobrevivencia por debajo del 50 % a la dosis de 800 Gy. La reducción de altura inició a la dosis de 200 Gy para la variedad IDIAP T-7, 300 Gy para DINA RPs y 400 Gy para IDIAP T-9. Conclusión. Las dosis de DL-50 identificadas fueron 692, 588 y 630 Gy y las dosis deGR-50 fueron 407, 467 y 380 Gy para las variedades IDIAP T-7, IDIAP T-9 Y DINA RPs, respectivamente. Se seleccionó la dosis GR-50 de cada una de las variedades para el programa de mejora por mutaciones.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahumada-Flores, S., Briceño-Zamora, M. F., García-Montoya, J. A., López-Cázarez, C., Pereo-Galvez, A. E., Parra-Cota, F. I., & de los Santos-Villalobos, S. (2020). Gamma radiosensitivity study on wheat (Triticum turgidum ssp. durum). Open Agriculture, 5(1), 558–562. https://doi.org/10.1515/opag-2020-0057

Ali Zafar, S., Aslam, M., Albaqami, M., Ashraf, A., Hassan, A., Iqbal, J., Maqbool, A., Naeem, M., Al-Yahyai, R., & Tan Kee Zuan, A. (2022). Gamma rays induced genetic variability in tomato (Solanum lycopersicum L.) germplasm. Saudi Journal of Biological Sciences, 29(5), 3300–3307. https://doi.org/10.1016/j.sjbs.2022.02.008

Brunner, H. (1995). Radiation induced mutations for plant selection. Applied Radiation and Isotopes, 46(6–7), 589–594. https://doi.org/10.1016/0969-8043(95)00096-8

Çelik, Ö., & Atak, Ç. (2017). Applications of ionizing radiation in mutation breeding. In A. M. Maghraby (Ed.), New Insights on Gamma Rays (pp. 111–132). InTech Open. https://doi.org/10.5772/66925

Datta, S. K. (2009). A report on 36 years of practical work on crop improvement through induced mutagenesis. In Q. Y. Shu (Ed.), Induced plant mutations in the genomics era (pp. 253–256). Food and Agriculture Organisation, & International Atomic Energy Agency. https://www.fao.org/3/i0956e/I0956e.pdf

Ernest, F. P, Noëlle, M. A. H., Godswill, N. -N., Thiruvengadam, M., Simon, O. A., Bille, N. H., Martin, B. J., Rebezov, M., & Shariati, M. A. (2020). Radiosensitivity of two varieties of watermelon (Citrullus lanatus) to different doses of gamma irradiation. Brazilian Journal of Botany, 43(4), 897–905. https://doi.org/10.1007/s40415-020-00659-8

Gruère, G. P., & Rosegrant, M. W. (2008). Assessing the implementation effects of the biosafety protocol’s proposed stringent information requirements for genetically modified commodities in countries of the Asia pacific economic cooperation. Review of Agricultural Economics, 30(2), 214–232. https://onlinelibrary.wiley.com/doi/10.1111/j.1467-9353.2008.00401.x

Guerra Murillo, J. A, Villarreal Nuñez, J. E., Herrera Vásquez, J. A., Aguilera Cogley, V., & Osorio Burgos, O. (2016). Manejo integrado del cultivo de tomate industrial (Manual técnico). Instituto de Investigación Agropecuaria de Panamá. http://www.idiap.gob.pa/download/manual-tecnico-manejo-integrado-del-cultivo-de-tomate-industrial/?wpdmdl=3309

Hazra, S., Gorai, S., Bhattacharya, S., Bose, S., Hazra, P., Chattopadhyay, A., & Maji, A. (2022). Radio-sensitivity of diverse tomato genotypes with respect to optimization of gamma irradiation dose. Brazilian Journal of Botany, 45, 917–927. https://doi.org/10.1007/s40415-022-00823-2

Hazra, S., Gorai, S., Umesh Kumar, V., Bhattacharya, S., Maji, A., Jambhulkar, S., Ali, N., & Chattopadhyay, A. (2021). Optimization of gamma radiation dose for induction of mutations in okra. International Journal of Vegetable Science, 27(6), 574–584. https://doi.org/10.1080/19315260.2021.1894626

Hernández-Jiménez, A., Pérez-Jiménez, J. M., Bosch-Infante, D., & Speck, N. C. (2019). La clasificación de suelos de Cuba: énfasis en la versión de 2015. Cultivos Tropicales, 40(1), a15–e15. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1504/2622

Hernández-Muñoz, S., Pedraza-Santos, M. E., López, P. A., De la Cruz-Torres, E., Fernández-Pavía, S. P., Martínez-Palacios, A., & Martínez-Trujillo, M. (2017). Determinación de la DL50 Y GR 50 con rayos gamma (60Co) en protocormos de Laelia autumnalis in vitro. Agrociencia, 51(5), 507–524. https://agrociencia-colpos.org/index.php/agrociencia/article/view/1307/1307

Iglesias-Andreu, L. G., Sánchez-Velásquez, L. R., Tivo-Fernández, Y., Luna-Rodríguez, M., Flores-Estévez, N., Noa-Carrazana, J. C., Ruiz-Bello, C., & Moreno-Martínez, J. L. (2010). Efecto de radiaciones gamma en Abies religiosa (Kunth) Schltd. et Cham. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 16(1), 5–12.

Jaipo, N., Kosiwikul, M., Panpuang, N., & Prakrajang, K. (2019). Low dose gamma radiation effects on seed germination and seedling growth of cucumber and okra. Journal of physics: Conference series, 1380, Article 012106. https://doi.org/10.1088/1742-6596/1380/1/012106

Just, D., Garcia, V., Fernandez, L., Bres, C., Mauxion, J.-P., Petit, J., Jorly, J., Assali, J., Bournonville, C., Ferrand, C., Baldet, P., Lemaire-Chamley, M., Mori, K., Okabe, Y., Ariizumi, T., Asamizu, E., Ezura, H., & Rothan, C. (2013). Micro-Tom mutants for functional analysis of target genes and discovery of new alleles in tomato. Plant Biotechnology, 30(3), 225–231. https://doi.org/10.5511/plantbiotechnology.13.0622a

Kon, E., Ahmed, O. H., Saamin, S., & Majid, N. M. A. (2007). Gamma radiosensitivity study on long bean (Vigna sesquipedalis). American Journal of Applied Sciences, 4(12), 1090–1093.

Laskar, R. A., & Khan, S. (2014). Mutagenic effects of MH and MMS on induction of variability in broad bean (Vicia faba L.). Annual Research & Review in Biology, 4(7), 1129–1140. https://doi.org/10.9734/arrb/2014/6553

Madriz-Martínez, M., Fernández-Acuña, A., Hernandez-Villalobos, S., Orozco-Rodríguez, R., & Argüello-Delgado, J. (2022). Radiosensibilidad del arroz (Oryza sativa L. var CR5272) por irradiación gamma en Costa Rica. Cultivos tropicales, 43(1), Artículo 08. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1644/3233

Manova, V., & Gruszka, D. (2015). DNA damage and repair in plants - from models to crops. Frontiers in Plant Science, 6, Article 885. https://doi.org/10.3389/fpls.2015.00885

Mudibu, J., Nkongolo, K. K. C., Kalonji-Mbuyi, A., & Kizungu, R. V. (2012). Effect of gamma irradiation on Morpho-agronomic characteristics of soybeans (Glycine max L.). American Journal of Plant Sciences, 3(3), 331–337. https://doi.org/10.4236/ajps.2012.33039

Murti, R. H., Kim, H. Y., & Yeoung, Y. R. (2013). Effectiveness of gamma ray irradiation and ethyl methane sulphonate on in vitro mutagenesis of strawberry. African Journal of Biotechnology, 12(30), 4803–4812. https://doi.org/10.5897/ajb12.1386

Norfadzrin, F., Ahmed, O. H., Shaharudin, S., & Abdul Rahman, D. (2007). A preliminary study on gamma radiosensitivity of tomato (Lycopersicon esculentum) and okra (Abelmoschus esculentus). International Journal of Agricultural Research, 2(7), 620–625. https://doi.org/10.3923/ijar.2007.620.625

Patil, U. H., Karale, A. R., Katwate, S. M., & Patil, M. S. (2017). Mutation breeding in chrysanthemum (Dendranthema grandiflora T.). Journal of Pharmacognosy and Phytochemistry, 6(6), 230–232. https://www.phytojournal.com/archives?year=2017&vol=6&issue=6&ArticleId=2083

Pavan Kumar, D., & Venu-Babu, P. (2011). Gamma radiosensitivity study on rice (Oryza sativa L.). Asian Journal of Plant Science & Research, 3(1), 54–68.

Peng, C. S., Hoe, P. C. K., Bahari, N., & Shamsudin, S. (2020). Radiosensitivity test of tomato (Solanum lycopersicum) to gamma irradiation. Jurnal Sains Nuklear Malaysia, 32(1), 1–9. https://202.186.20.70/index.php/jsnm/article/view/159

Postelnicu, T. (2011). Probit analysis. In M. Lovric (Ed.), International Encyclopedia of Statistical Science (pp. 1128–1131). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-04898-2_461

Ramírez, R., González, L. M., Camejo, Y., Zaldívar, N., & Fernández, Y. (2006). Estudio de radiosensibilidad y selección del rango de dosis estimulantes de rayos X en cuatro variedades de tomate (Lycopersicon esculentum Mill). Cultivos Tropicales, 27(1), 63–67. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/398/pdf

Ranjan, A., Ichihashi, Y., & Sinha, N. R. (2012). The tomato genome: implications for plant breeding, genomics and evolution. Genome Biology, 13(8), Article 167. https://doi.org/10.1186/gb-2012-13-8-167

Roslim, D. I., Herman, & Fiatin, I. (2015). Lethal dose 50 (ld 50) of mungbean (Vigna radiata L. Wilczek) cultivar kampar. SABRAO Journal of Breeding & Genetics, 47(4), 510–516. http://sabraojournal.org/wp-content/uploads/2018/01/SABRAO-J-Breed-Genet-47-4-510-516-Dewi.pdf

Saraswathi, M. S., Kannan, G., Uma, S., Thangavelu, R., & Backiyarani, S. (2016). Improvement of banana cv. Rasthali (Silk, AAB) against Fusarium oxysporum f.sp. cubense (VCG 0124/5) through induced mutagenesis: Determination of LD50 specific to mutagen, explants, toxins and in vitro and in vivo screening for Fusarium wilt resistance. Indian Journal of Experimental Biology, 54(5), 345–353.

Shu, Q. Y., Forster, B. P., & Nakagawa, H. (2012). Principles and applications of plant mutation breeding. In Q. Y. Shu, B. P. Forster, & H. Nakagawa. (Eds.), Plant mutation breeding and biotechnology (pp. 301–325). CABI. https://doi.org/10.1079/9781780640853.0301

Sikder, S., Biswas, P., Hazra, P., Akhtar, S., Chattopadhyay, A., Badigannavar, A. M., & D’Souza, S. F. (2013). Induction of mutation in tomato (Solanum lycopersicum L.) by gamma irradiation and EMS. The Indian Journal of Genetics & Plant Breeding, 73(4), 392–399. https://doi.org/10.5958/j.0975-6906.73.4.059

Spencer-Lopes, M. M., Forster, B. P., & Jankuloski, L. (Eds.) (2021). Manual de mejoramiento por mutaciones (3a ed.). Organización de las Naciones Unidas para la Alimentación y la Agricultura, & Organismo Internacional de Energía Atómica. https://www.fao.org/3/i9285es/I9285ES.pdf

Trivedi, M., Singh, R., Shukla, M., & Tiwari, R. K. (2016). GMO and food security. In Omkar (Ed.), Ecofriendly pest management for food security (Chapter 23, pp. 703–726). Elsevier. https://doi.org/10.1016/b978-0-12-803265-7.00023-3

Villaseñor Mir, H. E. (2018). Sistema de mejoramiento genético de trigo en México. Revista Mexicana de Ciencias Agrícolas, (11), 2183–2189. https://doi.org/10.29312/remexca.v0i11.796

Publicado

2024-01-08

Cómo citar

Jaén Villarreal, J. E., González Cepero, M. C., Camargo Buitrago, I., Sáez Cigarruista, A. E., Guillama Alonso, R., & Guerra Murillo, J. Ángel. (2024). Radiosensibilidad de tres variedades de tomate (Solanum lycopersicum L.) irradiadas con rayos gamma de Cobalto-60. Agronomía Mesoamericana, 35, 54329. https://doi.org/10.15517/am.2024.54329

Número

Sección

Notas Técnicas