Actividad biológica de maíz (Zea mays) de color mejorado cultivado en el sur de Sonora
DOI:
https://doi.org/10.15517/am.2024.55615Palabras clave:
polifenoles, flavonoides, antocianinas, maíces de colorResumen
Introducción. En México, el 85 % de las siembras son maíces blancos, el 10 % amarillo blancos y el 5 % de otros colores. Se han realizado estudios bioquímicos de maíces nativos pigmentados, pero existe poca información en maíces mejorados en color. Objetivo. Evaluar el contenido de fitoquímicos y capacidad antimicrobiana de dos híbridos de maíz pigmentado cultivados en el Tecnológico Nacional de México, Valle del Yaqui. Materiales y métodos. En granos de híbridos de maíz de color rojo y morado se realizaron las extracciones de biocompuestos a partir de una porción del maíz cultivado en el sur de Sonora, México, durante el ciclo verano-invierno 2020. Se utilizó una solución de etanol, ácido acético y agua en una proporción de treinta partes. La composición proximal, contenido de antocianinas, polifenoles y flavonoides se determinaron mediante métodos estandarizados. La capacidad antioxidante se evaluó mediante las metodologías ABTS (2,2’–azino–bis–(3–ethylbenzothiazoline–6–sulphonic acid)) y DPPH (2,2-difenil-1-picrilhidracilo). Además, se determinó la capacidad antimicrobiana y la concentración mínima inhibitoria. Resultados. El maíz morado presentó mayor contenido de antocianinas (340,98±5,21 mg/100 g) y polifenoles (173,68±24,23 mg de ácido gálico/100 g), en comparación con el maíz rojo. Los flavonoides son más abundantes en el maíz morado (575,10±27,88 mg de quercetina/100 g). Ambos híbridos de maíz exhibieron una capacidad antioxidante superior al 50 % frente a los radicales ABTS y DPPH. Respecto a la actividad antimicrobiana, se observó mayor inhibición para Escherichia coli y Salmonella (18 % y 47 %), y menor para Staphylococcus aureus y Shigella (19 % y 34 %) en comparación con la gentamicina. Conclusión. El maíz morado mostró mayor contenido de antocianinas, polifenoles y flavonoides. Ambos híbridos tuvieron una capacidad antioxidante mayor al 50 %. La actividad antimicrobiana fue mayor contra E. coli y Salmonella, que contra S. aureus y Shigella.
Descargas
Citas
AAmerican Association of Cereal Chemists. (2009). Approved methods of analysis (11th ed.). AACC International.
Aguilar-Hernández, Á. D., Salinas-Moreno, Y., Ramírez-Díaz, J. L., Bautista-Ramírez, E., & Flores-López, H. E. (2019). Antocianinas y color en grano y olote de maíz morado peruano cultivado en Jalisco, México. Revista Mexicana de Ciencias Agrícolas, 10(5), 1071–1082. https://doi.org/10.29312/remexca.v10i5.1828
Association of Official Analytical Chemists. (2005). Official methods of analysis (18th ed.). AOAC International.
Barnes, J. S., Nguyen, H. P., Shen, S., & Schug, K. A. (2009). General method for extraction of blueberry anthocyanins and identification using high performance liquid chromatography–electrospray ionization-ion trap-time of flight-mass spectrometry. Journal of Chromatography A, 1216(23), 4728–4735. https://doi.org/10.1016/j.chroma.2009.04.032
Bruneton, J. (2001). Fitoquímica plantas Medicinales. Editorial Acribia.
Castro-Enríquez, D. D., Montaño-Leyva, B., Del Toro-Sánchez, C. L., Juárez-Onofre, J. E., Carvajal-Millán, E., López-Ahumada, G. A., Barreras-Urbina, C. G., Tapia-Hernández, J. A., & Rodríguez-Félix, F. (2020). Effect of ultrafiltration of Pitaya extract (Stenocereus thurberi) on Its phytochemical content, antioxidant capacity, and UPLC-DAD-MS profile. Molecules, 25(2), Article 281. https://doi.org/10.3390/molecules25020281
Ccaccya Ccaccya, A. M., Soberón Lozano, M., & Arnao Salas, I. (2019). Estudio comparativo del contenido de compuestos bioactivos y cianidina-3-glucósido del maíz morado (Zea mays L.) de tres regiones del Perú. Revista de la Sociedad Química del Perú, 85(2), 206–215. https://doi.org/10.37761/rsqp.v85i2.78
Francavilla, A., & Joye, I. J. (2020). Anthocyanins in whole grain cereals and their potential effect on health. Nutrients, 12(10), Article 2922. https://doi.org/10.3390/nu12102922
Furtak, K., GawryjoŁEk, K., Gajda, A., & GaŁĄZka, A. (2017). Effects of maize and winter wheat grown under different cultivation techniques on biological activity of soil. Plant, Soil and Environment, 63(10), 449–454. https://doi.org/10.17221/486/2017-PSE
García Reyes, E., Flores Naveda, A., Ruiz Torres, N., Camposeco Montejo, N., Ramírez Barrón, S. N., & García López, J. I. (2022). Compuestos fenólicos y capacidad antioxidante de genotipos de maíz pigmentado (azul/morado). Temas de Ciencia y Tecnología, 26(77), 13–19. https://www.utm.mx/edi_anteriores/temas77/T77_E02_fenolicos_genotipos_maiz_pigmentado.pdf
Giordano, D., Beta, T., Vanara, F., & Blandino, M. (2018). Influence of Agricultural Management on Phytochemicals of Colored Corn Genotypes (Zea mays L.). Part 1: Nitrogen Fertilization. Journal of Agricultural and Food Chemistry, 66(17), 4300–4308. https://doi.org/10.1021/acs.jafc.8b00325
Gupta, V., Pal, K., Bhagat, A., Goel, A., & Chander, J. (2020). Quinolone susceptibility in salmonella isolates based on minimum inhibitory concentration determination. Journal of Laboratory Physicians, 12(4), 263–267. https://doi.org/10.1055/s-0040-1721163
Iglesias, J. O. (2016). La resistencia a los antibióticos: la amenaza de las superbacterias. Los Libros de la Catarata.
Jakobek, L., Šeruga, M., Medvidović-Kosanović, M., & Novak, I. (2007). Antioxidant activity and polyphenols of Aronia in comparison to other berry species. Agriculturae Conspectus Scientificus, 72(4), 301–306.
Loarca-Piña, G., Neri, M., Figueroa, J. d. D., Castaño-Tostado, E., Ramos-Gómez, M., Reynoso, R., & Mendoza, S. (2019). Chemical characterization, antioxidant and antimutagenic evaluations of pigmented corn. Journal of Food Science and Technology, 56, 3177–3184. https://doi.org/10.1007/s13197-019-03671-3
López-Martínez, L. X., & García-Galindo, H. S. (2010). Actividad antioxidante de extractos metanólicos y acuosos de distintas variedades de maíz mexicano. Nova Scientia, 2(3), 51–65. https://hrcak.srce.hr/19396
Lopez-Martinez, L. X., Oliart-Ros, R. M., Valerio-Alfaro, G., Lee, C. H., Parkin, K. L., & Garcia, H. S. (2009). Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. LWT - Food Science and Technology, 42(6), 118–1192. https://doi.org/10.1016/j.lwt.2008.10.010
Ma, Y., Ding, S., Fei, Y., Liu, G., Jang, H., & Fang, J. (2019). Antimicrobial activity of anthocyanins and catechins against foodborne pathogens Escherichia coli and Salmonella. Food Control, 106, Article 106712. https://doi.org/10.1016/j.foodcont.2019.106712
Meng, L., Zhu, J., Ma, Y., Sun, X., Li, D., Li, L., Bai, H., Xin, G., & Meng, X. (2019). Composition and antioxidant activity of anthocyanins from Aronia melanocarpa cultivated in Haicheng, Liaoning, China. Food Bioscience, 30, Article 100413. https://doi.org/10.1016/j.fbio.2019.100413
Mex-Álvarez, R. M. J. (2016). Análisis proximal y fitoquímico de cinco variedades de maíz del Estado de Campeche, México. Revista Latinoamericana de Recursos Naturales, 12(2), 74–80. https://itson.mx/publicaciones/rlrn/Paginas/vol12.aspx
Miranda, C. D., Rojas, R., Contreras-Lynch, S., & Vega, A. (2021). Evaluation of the correlation between minimum inhibitory concentrations (MIC) and disk diffusion data of Flavobacterium psychrophilum isolated from outbreaks occurred in Chilean salmonid farms. Aquaculture, 530, Article 735811. https://doi.org/10.1016/j.aquaculture.2020.735811
Molyneux, P. (2004). The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26(2), 211–219. https://sjst.psu.ac.th/article.php?art=214
Monosalvas, A., Taimal, R., & Villacrés, E. (2019). Efecto de la humedad de alimentación y temperatura de extrusión sobre el contenido nutricional de un snack a base de maíz, chocho y papa. Revista Bases de la Ciencia, 4(3), 67–80. https://doi.org/10.33936/rev_bas_de_la_ciencia.v4i3.1911
Patricia-Chaparro, M., Rendón, M. R., Chavez, W., Muñoz, W., Pabón, L. C., & Otálvaro-Álvarez, Á. M. (2015). Extracción de compuestos fenólicos con actividad antioxidante a partir de Champa (Campomanesia lineatifolia). Revista CENIC Ciencias Químicas, 46, 38–46.
Pérez-Pérez, E., Ettiene, G., Marín, M., Casassa-Padron, A., Silva, N., Raga, J., González, C., Sandoval, L., & Medina, D. (2014). Determinación de fenoles y flavonoides totales en hojas de guayabo (Psidium guajava L.). Revista de la Facultad de Agronomía, 31, 60–77. https://produccioncientificaluz.org/index.php/agronomia/article/view/27149
Quintanilla-Rosales, V. L., Galindo-Luna, K., Zavala-García, F., Pedroza-Flores, J. A., Heredia, J. B., Urías-Orona, V., Muy.Rangel, M. D., & Niño-Medina, G. (2017). Fenólicos solubles de tipo flavonoide y capacidad antioxidante en genotipos criollos pigmentados de maíz (Zea mays). Información Técnica Económica Agraria, 113(4), 325–334. https://doi.org/10.12706/itea.2017.020
Ramírez Cárdenas, A., Isaza Mejía, G., Pérez Cárdenas, J. E., & Martínez Garzón, M. M. (2017). Estudio fitoquímico preliminar y evaluación de la actividad antibacteriana del Solanum Dolichosepalum Bitter (Frutillo). Revista Cubana de Plantas Medicinales, 22(1), 1–11.
Ramos-Escudero, F., Muñoz, A. M., Alvarado-Ortíz, C., Alvarado, A., & Yáñez, J. A. (2012). Purple corn (Zea mays L.) phenolic compounds profile and its assessment as an agent against oxidative stress in isolated mouse organs. Journal of Medicinal Food, 15(2), 206–215. https://doi.org/10.1089/jmf.2010.0342
Rangel-Lucio, J. A., Santacruz-Varela, A., Córdova-Téllez, L., García-Rodríguez, J. G., Cervantes-Ortíz, F., Vaquera-Huerta, H., & Cuenca-Salgado, J. A. (2021). Adaptación y selección de maíces nativos en la región del bajío de México por su caracterización morfológica. Revista Fitotecnia Mexicana, 44(2), 241–241. https://doi.org/10.35196/rfm.2021.2.241
Reimer, L. G., Wilson, M. L., & Weinstein, M. P. (1997). Update on detection of bacteremia and fungemia. Clinical Microbiology Reviews, 10(3), 444–465. https://doi.org/10.1128/cmr.10.3.444
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9-10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Reyes, S. R., Casanova, E. V., Romero, D. R., Horna, L., & Lopez, C. (2013). Capacidad antioxidante in vitro de los flavonoides totales obtenidos de las hojas de Sambucus peruviana HBK (sauco) proveniente de la ciudad de Huamachuco. Pharmaciencia, 1(2), 57–64. https://revistas.unitru.edu.pe/index.php/farmabioq/article/view/464
Riverón-Rodríguez, E., Ramíez-Frómeta, N., Herrera-Alba, D., Barreras-García, G., Zayas-Tamayo, Á. M., & Regueiro-Gómez, Á. (2012). Estación de trabajo para el estudio de la cinética de crecimiento de Escherichia coli mediante el método de turbidez. Revista CENIC Ciencias Biológicas, 43(2), 1–5.
Rodriguez-Salinas, P. A., Zavala-Garcia, F., Urias-Orona, V., Muy-Rangel, D., Heredia, J. B., & Nino-Medina, G. (2020). Chromatic, nutritional and nutraceutical properties of pigmented native maize (Zea mays L.) genotypes from the northeast of Mexico. Arabian Journal for Science and Engineering, 45, 95–112. https://doi.org/10.1007/s13369-019-04086-0
Roy, S., & Rhim, J-W. (2021). Anthocyanin food colorant and its application in pH-responsive color change indicator films. Critical Reviews in Food Science and Nutrition, 61(14), 2297–2325. https://doi.org/10.1080/10408398.2020.1776211
Salinas-Moreno, Y., Martínez-Bustos, F., Soto-Hernández, M., Ortega-Paczka, R., & Arellano-Vázquez, J. L. (2003). Efecto de la nixtamalización sobre las antocianinas del grano de maíces pigmentados. Agrociencia, 37(6), 617–628. https://www.agrociencia-colpos.org/index.php/agrociencia/article/view/289
Salinas-Moreno, Y., Pérez-Alonso, J. J., Vázquez-Carrillo, G., Aragón-Cuevas, F., & Velázquez-Cardelas, G. A. (2012). Antocianinas y actividad antioxidante en maíces (Zea mays L.) de las razas Chalqueño, Elotes Cónicos y Bolita. Agrociencia, 46(7), 693–706. https://www.agrociencia-colpos.org/index.php/agrociencia/article/view/986
Sánchez, G. J. J., Stuber, C. W., & Goodman, M. M. (2000). Isozymatic diversity in the races of maize of the Americas. Maydica, 45(3), 185–203.
Santos, J., Oliveira, M. B. P. P., Ibáñez, E., & Herrero, M. (2014). Phenolic profile evolution of different ready-to-eat baby-leaf vegetables during storage. Journal of Chromatography A, 1327, 118–131. https://doi.org/10.1016/j.chroma.2013.12.085
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144–158. https://doi.org/10.5344/ajev.1965.16.3.144
Tian, X. Z., Lu, Q., Paengkoum, P., & Paengkoum, S. (2020). Effect of purple corn pigment on change of anthocyanin composition and unsaturated fatty acids during milk storage. Journal of Dairy Science, 103(9), 7808–7812. https://doi.org/10.3168/jds.2020-18409
Tian, X., Xin, H., Paengkoum, P., Paengkoum, S., Ban, C., & Sorasak, T. (2019). Effects of anthocyanin-rich purple corn (Zea mays L.) stover silage on nutrient utilization, rumen fermentation, plasma antioxidant capacity, and mammary gland gene expression in dairy goats. Journal of Animal Science, 97(3), 1384–1397. https://doi.org/10.1093/jas/sky477
Urias-Lugo, D. A., Heredia, J. B., Serna-Saldivar, S. O., Muy-Rangel, M. D., & Valdez-Torres, J. B. (2015). Total phenolics, total anthocyanins and antioxidant capacity of native and elite blue maize hybrids (Zea mays L.). CyTA-Journal of Food, 13(3), 336–339. https://doi.org/10.1080/19476337.2014.980324
Vera de Rosso, V., & Zerlotti Mercadante, A. (2023). Dyes in South America. In C. Stevens, T. Bechtold, A. Manian, & T. Pham (Eds.), Handbook of natural colorants (Vol. 8, pp. 63–73). Wiley. https://doi.org/10.1002/9781119811749.ch5
Villacrés, E., Tanquina, I., Yánez, C., Quelal, M., Alvarez, J., & Ramos, M. (2019). Impacto del procesamiento sobre los compuestos con propiedades antioxidantes de dos variedades de maíz (Zea mays L.). ACI Avances en Ciencias e Ingenierías, 11(1), 104–115. https://doi.org/10.18272/aci.v11i1.1099
Villanueva, C., Sevilla González, M. d. l. L., & Kross, R. D. (2013). La bioética medioambiental y el estrés oxidativo. Cuicuilco Revista de Ciencias Antropológicas, 20(58), 91–108. https://revistas.inah.gob.mx/index.php/cuicuilco/article/view/3893
Wallace, T. C., & Giusti, M. M. (2015). Anthocyanins. Advances in Nutrition, 6(5), 620–622. https://doi.org/10.3945/an.115.009233
Wang, Y., Li, Y., Yang, Y., Jiang, B., Li, D., Lui, C., & Feng, Z. (2023). A novel adsorbent drived from salted egg white for efficient removal of cationic organic dyes from wastewater. Journal of Molecular Liquids, 372, Article 121210. https://doi.org/10.1016/j.molliq.2023.121210
Zambrano Zambrano, C. S., & Zambrano Zambrano, P. R. (2020). Efecto de la humedad en dos variedades de maíz sobre los costos de molienda (Tesis de grado, Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López). Repositorio Digital ESPAM. http://repositorio.espam.edu.ec/handle/42000/1278
Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food chemistry, 64(4), 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2
Žilić, S., Kocadağlı, T., Vančetović, J., & Gökmen, V. (2016). Effects of baking conditions and dough formulations on phenolic compound stability, antioxidant capacity and color of cookies made from anthocyanin-rich corn flour. LWT - Food Science and Technology, 65, 597–603. https://doi.org/10.1016/j.lwt.2015.08.057
Žilić, S., Serpen, A., Akıllıoğlu, G., Gökmen, V., & Vančetović, J. (2012). Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels. Journal of Agricultural and Food Chemistry, 60(5), 1224–1231. https://doi.org/10.1021/jf204367z
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Francisco Cadena Cadena, Joe Luis Arias Moscoso, Gilberto Rodríguez Pérez , Alejandro García Ramírez , Alba Roció Meza Ochoa , Dulce A. Cuevas Acuña
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos morales de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución, no comercial y sin obra derivada de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista, no se puede hacer uso de la obra con propósitos comerciales y no se puede utilizar las publicaciones para remezclar, transformar o crear otra obra.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).