Identificación molecular de microorganismos en cultivos agrícolas, ornamentales y forestales en Costa Rica, 2009-2018. Parte 2
DOI:
https://doi.org/10.15517/am.2024.57347Palabras clave:
identifiación molecular, oligonucleótidos, bacteria, levadura, microbiotaResumen
Introducción. La identificación y detección de microorganismos a partir de técnicas moleculares se ha convertido en un insumo de gran ayuda para el diagnóstico de enfermedades y de organismos presentes en los cultivos. Organismos patogénicos, no patogénicos, controladores biológicos y microorganismos utilizados como competidores, antagonistas o mutualistas pueden aislarse de cultivos agrícolas, ornamentales y forestales. Objetivo. Identificar a nivel taxonómico, mediante técnicas moleculares, bacterias y levaduras patogénicas y no patogénicas en cultivos agrícolas, ornamentales y forestales de Costa Rica, y conservar el material en un banco de muestras de ADN. Materiales y métodos. Entre los años 2009 y 2018, el Laboratorio de Técnicas Moleculares del Centro de Investigación en Protección de Cultivos de la Universidad de Costa Rica recibió un total de 181 aislamientos de bacterias y levaduras para detección por medio de PCR tiempo final y tiempo real, e identificación mediante de la secuenciación de regiones específicas. Resultados. Del total de muestras, el 94,2 % se analizó por medio de secuenciación y el 5,8 % por PCR. Mediante detección por PCR en el cultivo de arroz, se identificaron bacterias como Burkholderia spp., Acidovorax avenae y Pseudomonas fuscovaginae. Por medio de la secuenciación de la región parcial de 16S, se identificaron 172 muestras de especies de bacterias y cinco muestras de especies de levaduras con la región ITS del ARN ribosomal 18S. Se identificaron microorganismos aislados a partir de dieciocho especies de plantas agrícolas, ornamentales y forestales; entre estos Pseudomonas, Bacillus y Enterobacter, y en el caso de levaduras, Candida, Pichia y Wickerhamomyces. Conclusión. Esta investigación permitió identificar a nivel taxonómico bacterias y levaduras provenientes de cultivos de Costa Rica. Además, se desarrolló un insumo de consulta y la posibilidad de utilizar a futuro los microorganismos conservados dentro de un banco de muestras de ADN.
Descargas
Citas
Abbes, C., Mansouri, A., Werfelli, N., & Landoulsi, A. (2018). Aerobic biodegradation of DDT by Advenella Kashmirensis and its potential use in soil bioremediation. Soil and Sediment Contamination: An International Journal, 27(6), 455–468. https://doi.org/10.1080/15320383.2018.1485629
Ahmed, T., Noman, M., Shahid, M., Shahid, M. S., & Li, B. (2021). Antibacterial potential of green magnesium oxide nanoparticles against rice pathogen Acidovorax oryzae. Materials Letters, 282, Article 128839. https://doi.org/10.1016/j.matlet.2020.128839
Ali, B. (2019). Functional and genetic diversity of bacteria associated with the surfaces of agronomic plants. Plants, 8, Article 91. https://doi.org/10.3390/plants8040091
Asaf, S., Numan, M., Khan, A., & Al-Harrasi, A. (2020). Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth. Critical Reviews in Biotechnology, 40(2), 138–152. https://doi.org/10.1080/07388551.2019.1709793
Bautista-Rosales, P., Calderon-Santoyo, M., Servín-Villegas, R., Ochoa-Álvarez, N., & Ragazzo-Sánchez, J. (2013). Action mechanisms of the yeast Meyerozyma caribbica for the control of the phytopathogen Colletotrichum gloeosporioides in mangoes. Biological Control, 65(3), 293–301. https://doi.org/10.1016/j.biocontrol.2013.03.010
Berger, B., Brock, A. K., & Ruppel, S. (2013). Nitrogen supply influences plant growth and transcriptional responses induced by Enterobacter radicincitans in Solanum lycopersicum. Plant Soil, 370, 641–652. https://doi.org/10.1007/s11104-013-1633-0
Blanco-Meneses, M. (2022). Identificación molecular de microorganismos en cultivos agrícolas, ornamentales y forestales en Costa Rica, 2009-2018. Parte 1. Agronomía Mesoamericana, 33(2), Article 46407. https://doi.org/10.15517/am.v33i2.46407
Blanco-Meneses, M., & Ristaino, J. (2011). Detection and quantification of Peronospora tabacina using a real-time polymerase chain reaction assay. Plant Disease, 95(6), 673–682. https://doi.org/10.1094/PDIS-05-10-0333
Branquinho, R., Günter, K., Kämpfer, P., & Peixe, L. (2015). The status of the species Bacillus aerophilus and Bacillus stratosphericus. Request for an opinion. International Journal of Systematic and Evolutionary Microbiology, 65, Article 1101. https://doi.org/10.1099/ijs.0.000004
Buszewski B., Rogowska, A., Pomastowski, P., Złoch, M., & Railean-Plugaru, V. (2017). Identification of microorganisms by modern analytical techniques. Journal of AOAC International, 100(6), 1607–1623. https://doi.org/10.5740/jaoacint.17-0207
Campos-Sánchez, R., Flores-Cruz, A., Molina-Mora, J. A., Mora, R., Rodríguez, C., Gatica-Arias, A., & Guzmán-Verri, C. (2021). Avances de la bioinformática en Costa Rica: vista retrospectiva y perspectivas. Revista de Biología Tropical, 69(4), 1204–1223. https://doi.org/10.15517/rbt.v69i4.46873
Candra, R. T., Prasasty, V. D., & Karmawan, L. U. (2022). Biochemical analysis of banana plants in interaction between endophytic bacteria Kocuria rhizophila and the fungal pathogen Fusarium oxysporum f. sp. cubense Tropical Race (Foc TR4). Biology and Life Sciences Forum, 11, Article 84. https://doi.org/10.3390/IECPS2021-11990
Carvalheira, A., Silva, J., & Teixeira, P. (2017). Lettuce and fruits as a source of multidrug resistant Acinetobacter spp. Food Microbiology, 64, 119–125. https://doi.org/10.1016/j.fm.2016.12.005
Castro-Chinchilla, J., & Umaña-Rojas, G. (2019). Yeasts and bacteria associated with pineapple fruit during postharvest handling. Acta Horticulturae, 1239, 77–84. https://doi.org/10.17660/ActaHortic.2019.1239.9
Catara, V. (2007). Pseudomonas corrugata: plant pathogen and/or biological resource? Molecular Plant Pathology, 8(3), 233–244. https://doi.org/10.1111/j.1364-3703.2007.00391.x
Ceze, L., Nivala, J., & Strauss, K. (2019). Molecular digital data storage using DNA. Nature Reviews Genetics, 20, 456–466. https://doi.org/10.1038/s41576-019-0125-3
Cheng, C., Wang, Q., Wang, Q. X., He, L. Y., & Sheng, X. (2021). Wheat-associated Pseudomonas taiwanensis WRS8 reduces cadmium uptake by increasing root surface cadmium adsorption and decreasing cadmium uptake and transport related gene expression in wheat. Environmental Pollution, 268, Article 115850. https://doi.org/10.1016/j.envpol.2020.115850
Chong, T. M., Chen, J. W., See-Too, W. S., Yu, C., Ang, G. Y., Lim, Y., Yin, W., Grandclement, C., Faure, D., Dessaux, Y., & Chank, K. (2017). Phenotypic and genomic survey on organic acid utilization profile of Pseudomonas mendocina strain S5.2, a vineyard soil isolate. AMB Express, 7, Article 138. https://doi.org/10.1186/s13568-017-0437-7
Chowdappa, P., Kumar, S.P., Lakshmi, M.J., & Upreti, K.K. (2013). Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biological Control, 65(1), 109–117. https://doi.org/10.1016/j.biocontrol.2012.11.009
Clark, L. C., & Hodgkin, J. (2015). Leucobacter musarum subsp. musarum sp. nov., subsp. nov., Leucobacter musarum subsp. japonicus subsp. nov., and Leucobacter celer subsp. astrifaciens subsp. nov., three nematopathogenic bacteria isolated from Caenorhabditis, with an emended description of Leucobacter celer. International Journal of Systematic and Evolutionary Microbiology, 65(11), 3977–3984. https://doi.org/10.1099/ijsem.0.000523
Cordovez, V., Schop, S., Hordijk, K., Dupré de Boulois, H., Coppens, F., Hanssen, I., Raaijmakers, J., & Carrion, V. (2018). Priming of plant growth promotion by volatiles of root-associated Microbacterium spp. Applied and Environmental Microbiology, 84(22), Article e01865-18. https://doi.org/10.1128/AEM.01865-18
Dañez, J., Requiso, P., Alfafara, C., Nayve, F., & Ventura, J. (2020). Optimization of fermentation factors for polyhydroxybutyrate (PHB) production using Bacillus megaterium PNCM 1890 in simulated glucose-xylose hydrolysates from agricultural residues. Philippine Journal of Science, 149(1), 163–175.
Dobrzyński, J., Jakubowska, Z., & Dybek, B. (2022). Potential of Bacillus pumilus to directly promote plant growth. Frontiers in Microbiology, 13, Article 1069053. https://doi.org/10.3389/fmicb.2022.1069053
Dubey, G., Kollah, B., Ahirwar, U., Mandal, A., Thakur, J., Patra, A., & Mohanty, S. (2017). Phylloplane bacteria of Jatropha curcas: diversity, metabolic characteristics, and growth-promoting attributes towards vigor of maize seedling. Canadian Journal of Microbiology, 63(10), 822–833. https://doi.org/10.1139/cjm-2017-0189
Estrada-Loera, R., Gallegos-Robles, M., Orona-Castillo, I., García-Hernandez, J., Osuna-Garcia, J., Sánchez-Lucio, R., Ríos-Plaza, J., & Vasquez-Vasquez, C. (2019). Prevalencia de bacterias patógenas en mango (Mangifera indica L) cv. Tommy Atkins. Biotecnia, 21(1), 5–12. https://biotecnia.unison.mx/index.php/biotecnia/article/view/807
Esyanti, R. R., Farah, N., Bajra, B. D., Nofitasari, D., Martien, R., Sunardi, & Safitri, R. (2020). Comparative study of nano-chitosan and synthetic bactericide application on chili pepper (Capsicum annuum L.) infected by Xanthomonas campestris. AGRIVITA Journal of Agricultural Science, 42(1), 13–23. https://doi.org/10.17503/agrivita.v42i1.1283
Fan, H. C., Zeng, L., Yang, P. W., Guo, Z. X., & Bai, T. T. (2016). First Report of Banana Soft Rot Caused by Klebsiella variicola in China. Plant Disease, 100(2), 517–517. https://doi.org/10.1094/PDIS-05-15-0586-PDN
Fernandez-Guimac, S., Peraz, J., Mendoza, J., Bustamante, D., & Calderon, M. S. (2023). Exploring the diversity of microorganisms and potential pectinase activity isolated from wet fermentation of coffee in northeastern Peru. Food Science and Technology, 43, Article e81922. https://doi.org/10.1590/fst.81922
Flemming, H. C., & Wuertz, S. (2019). Bacteria and archaea on Earth and their abundance in biofilms. Nature Reviews Microbiology, 17, 247–260 https://doi.org/10.1038/s41579-019-0158-9
Fluit, A. C., Bayjanov, J. R., Aguilar, M. D., Cantón, R., Tunney, M., Elborn, S., van Westreenen, M., & Ekkelenkamp, M. (2021). Characterization of clinical Ralstonia strains and their taxonomic position. Antonie van Leeuwenhoek, 114, 1721–1733. https://doi.org/10.1007/s10482-021-01637-0
Freedman, A., Peet, K., Boock, J., Penn, K., Prather, K., & Thompson, J. (2018). Isolation, development, and genomic analysis of Bacillus megaterium SR7 for growth and metabolite production under supercritical carbon dioxide. Frontiers in Microbiology, 9, Article 2152. http://doi.org/10.3389/fmicb.2018.02152
Furuya, N., Ura, H., Iiyama, K., Matsumoto, M., Takeshita, M., & Takanami, Y. (2002). Specific oligonucleotide primers based on sequences of the 16s-23s rDNA spacer region for the detection of Burkholderia gladioli by PCR. Journal of General Plant Pathology, 68, 220-224. http://doi.org/10.1007/PL00013080
Gechemba, O., Budambula, N., Makonde, H., Mugweru, J., & Matiru, V. (2015). Potentially beneficial rhizobacteria associated with banana plants in Juja, Kenya. Research & Reviews: Journal of Microbiology and Biotechnology, 7, 181-188.
Ghequire, M., Swings, T., Michiels, J., Gross, H., & De Mot, R. (2016). Draft genome sequence of Pseudomonas putida BW11M1, a banana rhizosphere isolate with a diversified antimicrobial armamentarium. Genome Announcement, 4(2), Article e00251-16. https://doi.org/10.1128/genomeA.00251-16
Giangacomo, C., Mohseni, M., Kovar, L., & Wallace, J. G. (2021). Comparing DNA extraction and 16S rRNA gene amplification methods for plant-associated bacterial communities. Phytobiomes Journal, 5(2), 190-201. https://doi.org/10.1094/PBIOMES-07-20-0055-R
Glaeser, S., & Kämpfer, P. (2015). Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Systematic and Applied Microbiology, 38(4), 237-245. https://doi.org/10.1016/j.syapm.2015.03.007
González-Pérez, E., Ortega-Amaro, M. A., Bautista, E., Delgado-Sánchez, P., & Jiménez-Bremont, J. F. (2022). The entomopathogenic fungus Metarhizium anisopliae enhances Arabidopsis, tomato, and maize plant growth. Plant Physiology and Biochemistry, 176, 34-43. https://doi.org/10.1016/j.plaphy.2022.02.008
Granados-Montero, M., Sánchez-Chacón, E., Vargas-Montero, M., & Barboza-Aguilar, C. (2014). Hallazgos ultraestructurales en lesiones foliares asociadas a ‘vena roja’ en helecho hoja de cuero. Revista Mexicana de Ciencias Agrícolas, 5(1), 37-48.
Gutiérrez-Barranquero, J., Cazorla, F., Torés, J., & de Vicente, A. (2019). Pantoea agglomerans as a new etiological agent of a bacterial necrotic disease of mango trees. Phytopathology, 109(1), 17-26. https://doi.org/10.1094/PHYTO-06-18-0186-R
Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98. https://doi.org/10.14601/Phytopathol_Mediterr-14998u1.29
Hall, C. M., Busch, J. D., Shippy, K., Allender, C. J., Kaestli, M., Mayo, M., Sahl, J., Schupp, J., Colman, R., Keim, P., Currie, B., & Wagner, D. (2015). Diverse Burkholderia species isolated from soils in the Southern United States with no evidence of B. pseudomallei. PLoS ONE, 10(11), Article 0143254. https://doi.org/10.1371/journal.pone.0143254
Ham, J. H., Melanson, R. A., & Rush, M. C. (2011). Burkholderia glumae: next major pathogen of rice? Molecular Plant Pathology, 12, 329–339. https://doi.org/10.1111/j.1364-3703.2010.00676.x
Hamidou, I., Bodo, L., & Harvill, E. (2017). Environmental origin of the genus Bordetella. Frontiers in Microbiology, 8, Article 28. https://doi.org/10.3389/fmicb.2017.00028
Hanh, H., & Mongkolthanaruk, W. (2017). Correlation of growth and IAA production of Lysinibacillus fusiformis UD 270. Journal of Applied and Physical Sciences, 3(3), 98–106. https://tafpublications.com/gip_content/paper/Japs-3.3.3.pdf
Hathout, A., el-nekeety, A., Hamed, A., Bassem, S., Abelaziz, M., Ghareeb, M., & Aly, S. (2016). Novel Egyptian bacterial strains exhibiting antimicrobial and antiaflatoxigenic activity. Journal of Applied Pharmaceutical Science, 6(12), 001–010.
Heyrman, J., Rodríguez-Díaz, M., Joke, D., Andreas, F., Niall, L., & De Vos, P. (2005). Bacillus arenosi sp. nov., Bacillus arvi sp. nov. and Bacillus humi sp. nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 55(1), 111–117. https://doi.org/10.1099/ijs.0.63240-0
Ho, Y. N., Chiang, H., Chao, C., Su, C., Hsu, H., Guo, C., Hsieh, L., & Huang, C. (2015). In planta biocontrol of soilborne Fusarium wilt of banana through a plant endophytic bacterium, Burkholderia cenocepacia 869T2. Plant Soil, 387, 295–306. https://doi.org/10.1007/s11104-014-2297-0
Horita, M., Yano, K., & Tsuchiya, K. (2004). PCR-based specific detection of Ralstonia solanacearum race 4 strains. Journal of General Plant Pathology, 70, 278–283. https://doi.org/10.1007/s10327-004-0126-7
Hou, Y., Zhang, Y., Yu, L., Ding, X., Liu, L., Wang, L., & Huang, S. (2020). First report of Pseudomonas oryzihabitans causing rice panicle blight and grain discoloration in China. Plant Disease, 104(11), Article 3055. https://doi.org/10.1094/PDIS-10-19-2186-PDN
Huang, R., Li, G. Q., Zhang, J., Yang, L., Che, H., Jiang, D., & Huang, H. (2011). Control of postharvest botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology, 101(7), 859–869. https://doi.org/10.1094/PHYTO-09-10-0255
Ibrahim, Y. E., Balabel, N. M., Saleh, A. A., & Farag, N. (2020). Determination of differences in Ralstonia solanacearum phylotype II, sequevar 1 forms as related to their colony characteristics on Kelman medium and pathogenesis. Journal of Plant Pathology, 102, 59–66. https://doi.org/10.1007/s42161-019-00372-w
Ibrahim, M. A., Metry, E. A., Moustafa, S. A., Tawfik, A. E., & NasrEl-Din, T. M. (2005). Morphological and molecular diagnosis of commercial potato cultivars infected with Ralstonia solanacearum. Arabian Journal of Biotechnology, 8(2), 211–222.
Ijato, J. Y., Olajide, O. O., & Ojo, B. O. (2022). Rhizoctonia solani, Aspergillus niger, Streptococcus pyrogenes, Alcaligenes faecalis and Proteus vulgaris selectively associated with two varieties of banana and effects of storage conditions on nutritional composition of banana. International Journal of Frontline, 01(01), 007–013. https://doi.org/10.56355/ijfrr.2022.1.1.0002
Islam, M. R., Hossain, M. R., Kim, H. T., Jesse, D. M. I., Abuyusuf, M., Jung, H. J., Park, J. I., & Nou, I. S. (2019). Development of molecular markers for detection of Acidovorax citrulli strains causing bacterial fruit blotch disease in melon. International Journal of Molecular Science, 20, Article 2715. https://doi.org/10.3390/ijms20112715
Jeng, R. S., Svircev, A. M., Myers, A. L., Beliaeva, L., Hunter, D. M., & Hubbes, M. (2001). The use of 16S and 16S-23S rDNA to easily detect and differentiate common Gram-negative orchard epiphytes. Journal of Microbiological Methods, 44(1), 69–77. https://doi.org/10.1016/s0167-7012(00)00230-x
Karthik, M., Pushpakanth, P., Krishnamoorthy, R., & Senthilkumar, M. (2017). Endophytic bacteria associated with banana cultivars and their inoculation effect on plant growth. The Journal of Horticultural Science and Biotechnology, 92(6), 568–576. https://doi.org/10.1080/14620316.2017.1310600
Kaur, M., Chadha, P., Kaur, S., Kaur, A., Kaur, R., Kumar, A., & Kaur, R. (2018). Schizophyllum commune induced genotoxic and cytotoxic effects in Spodoptera litura. Scientific Reports, 8, Article 4693. https://doi.org/10.1038/s41598-018-22919-0
Khleekorn, S., & Wongrueng, S. (2014). Evaluation of antagonistic bacteria inhibitory to Colletotrichum musae on banana. Journal of Agricultural Technology, 10(2), 383–390.
Kim, J., & Park, W. (2015). Indole: a signaling molecule or a mere metabolic byproduct that alters bacterial physiology at a high concentration? Journal of Microbiology, 53, 421–428. https://doi.org/10.1007/s12275-015-5273-3
Kini, K., Agnimonhan, R., Afolabi, O., Milan, B., Soglonou, B., Gbogbo, V., Koebnik, R., & Silué, D. (2017). First report of a new bacterial leaf blight of rice caused by Pantoea ananatis and Pantoea stewartii in Benin. Plant Disease, 101(1), Article 242. https://doi.org/10.1094/PDIS-06-16-0940-PDN
Krawczyk, K., & Borodynko-Filas, N. (2020). Kosakoniacowanii as the new bacterial pathogen affecting soybean (Glycine max Willd.). European Journal of Plant Pathology, 157, 173–183. https://doi.org/10.1007/s10658-020-01998-8
Kumar, A., Prameela, T. P., Suseelabhai, R., Siljo, A., Anandaraj, M., & Vinatzer, B. A. (2014). Host specificity and genetic diversity of race 4 strains of Ralstonia solanacearum. Plant Pathology, 63, 1138–1148. https://doi.org/10.1111/ppa.12189
Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L., & Pace, N. R. (1985). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proceedings of the National Academy of Sciences of the United States of America, 82(20), 6955–6959. https://doi.org/10.1073/pnas.82.20.6955
Lau, E., Tani, A., Khew, C., Chua, Y., & Hwang, S. (2020). Plant growth-promoting bacteria as potential bio-inoculants and biocontrol agents to promote black pepper plant cultivation. Microbiological Research, 240, Article 126549. https://doi.org/10.1016/j.micres.2020.126549
Lee, C., Lee, H. H., Mannaa, M., Kim, N., Park, J., Kim, J., & Seo, Y. S. (2018). Genomics-based sensitive and specific novel primers for simultaneous detection of Burkholderia glumae and Burkholderia gladioli in rice seeds. Plant Pathology Journal, 34(6), 490–498. https://doi.org/10.5423/PPJ.OA.07.2018.0136
Leite J., R. P., Minsavage, G. V., Bonas, U., & Stall R. E. (1994). Detection and identification of phytopathogenic Xanthomonas strains by amplification of DNA sequences related to the hrp genes of Xanthomonas campestris pv. vesicatoria. Applied and Environmental Microbiology, 60(4), 1068–1077. https://doi.org/10.1128/aem.60.4.1068-1077.1994
Leneveu-Jenvrin, C., Quentin, B., Assemat, S., Hoarau, M., Meile, J., & Remize, F. (2020). Changes of quality of minimally-processed pineapple (Ananas comosus, var. ‘Queen Victoria’) during cold storage: fungi in the leading role. Microorganisms, 8(2), Article 185. https://doi.org/10.3390/microorganisms8020185
Li, C., Cheng, P., Zheng, L., Li, Y., Chen, Y., Wen, S., & Yu, G. (2021). Comparative genomics analysis of two banana Fusarium wilt biocontrol endophytes Bacillus subtilis R31 and TR21 provides insights into their differences on phytobeneficial trait. Genomics, 113(3), 900–909. https://doi.org/10.1016/j.ygeno.2021.02.006
Li, H., Guan, Y., Dong, Y., Zhao, L., Rong, S., Chen, W., Lv, M., Xu, H., Gao, X., Chen, R., Li, L., & Xu, Z. (2018). Isolation and evaluation of endophytic Bacillus tequilensis GYLH001 with potential application for biological control of Magnaporthe oryzae. PLOS ONE, 13(10), Article e0203505. https://doi.org/10.1371/journal.pone.0203505
Li, Z., Henawy, A. R., Halema, A. A., Fan, Q., Duanmu, D., & Huang, R. A. (2022). Wild rice rhizobacterium Burkholderia cepacia BRDJ enhances nitrogen use efficiency in rice. International Journal of Molecular Science, 23, Article 10769. https://doi.org/10.3390/ijms231810769
Li, Q., Xiang, P., Li, L., Zhang, T., Wu, Q., Bao, Z., Tu, W., & Zhao, C. (2024). Phosphorus mining activities alter endophytic bacterial communities and metabolic functions of surrounding vegetables and crops. Plant Soil, 497, 155–174. https://doi.org/10.1007/s11104-023-05961-4
Liu, M., Hong, G., Li, H., Bing, X., Chen, Y., Jing, X., Gershenzon, J., Lou, Y., Baldwin, I., & Li, R. (2023). Sakuranetin protects rice from brown planthopper attack by depleting its beneficial endosymbionts. Proceedings of the National Academy of Sciences, 120(23), Article e2305007120. https://doi.org/10.1073/pnas.2305007120
Liu, M., Philp, J., Wang, Y., Hu, J., Wei, Y., Li, J., Ryder, M., Toh, R., Zhou, T., Denton, M., Wu, Y., & Yang, H. (2022). Plant growth-promoting rhizobacteria Burkholderia vietnamiensis B418 inhibits root-knot nematode on watermelon by modifying the rhizosphere microbial community. Scientific Reports, 12, Article 8381. https://doi.org/10.1038/s41598-022-12472-2
Liu, Q., Xiao, W., Wu, Z., Li, S., Yuan, Y., & Li, H. (2016). Identification of Dickeya dadantii as a causal agent of banana bacterial sheath rot in China. Journal of Plant Pathology, 98(3), 503–510.
Lu, X., Zhou, D., Chen, X., Zhang, J., Huang, H., & Wei, L. (2017). Isolation and characterization of Bacillus altitudinis JSCX-1 as a new potential biocontrol agent against Phytophthora sojae in soybean [Glycine max (L.) Merr.]. Plant Soil, 416, 53–66. https://doi.org/10.1007/s11104-017-3195-z
Macedo-Raygoza, G., Valdez-Salas, B., Prado, F., Prieto, K., Yamaguchi, L., Kato, M., Canto-Canché, B., Carrillo-Beltrán, M., Di Mascio, P., White, J., & Beltrán-García, M. (2019). Enterobacter cloacae, an endophyte that establishes a nutrient-transfer symbiosis with banana plants and protects against the black sigatoka pathogen. Frontiers in Microbiology, 10, Article 804. https://doi.org/10.3389/fmicb.2019.00804
Mahunu, G., Zhang, H., Yang, Q., Zhang, X., Li, D., & Zhou, Y. (2016). Improving the biocontrol efficacy of Pichia caribbica with phytic acid against postharvest blue mold and natural decay in apples. Biological Control, 92, 172–180. https://doi.org/10.1016/j.biocontrol.2015.10.012
Manter, D.K., Hunter, W.J., & Vivanco, J. M. (2011). Enterobacter soli sp. nov.: a lignin-degrading γ-Proteobacteria isolated from soil. Current Microbiology, 62, 1044–1049. https://doi.org/10.1007/s00284-010-9809-9
Marcano, I., Díaz-Alcántara, C., Urbano, B., & González-Andrés, F. (2016). Assessment of bacterial populations associated with banana tree roots and development of successful plant probiotics for banana crop. Soil Biology and Biochemistry, 99, 1–20. https://doi.org/10.1016/j.soilbio.2016.04.013
Merga, J., Habtamu, T., & Eshetu D. (2018). Integrated management of bacterial wilt (Ralstonia solanacearum) of ginger (Zingiber officinale) in Southwestern Ethiopia. Archives of Phytopathology and Plant Protection, 51(15-16), 834-851. https://doi.org/10.1080/03235408.2018.1504374
Mitra, S., Pramanik, K., Kumar, P., Soren, T., Sarkar, A., Sundar, R., Pandey, S., & Maiti, T. (2018). Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress. Microbiological Research, 210, 12–25. https://doi.org/10.1016/j.micres.2018.03.003
Mullins, A. J., Murray, J., Bull, M. J., Jenner, M., Jones, C., Webster, G., Green, A., Neill, D., Connor, T., Parkhill, J., Challis, G., & Mahenthiralingam, E. (2019). Genome mining identifies cepacin as a plant-protective metabolite of the biopesticidal bacterium Burkholderia ambifaria. Nature Microbiology, 4, 996–1005. https://doi.org/10.1038/s41564-019-0383-z
Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8(19), 4321–4326. https://doi.org/10.1093/nar/8.19.4321
Musonerimana, S., Bez, C., Licastro, D., Habarugira, G., Bigirimana, J., & Venturi, V. (2020). Pathobiomes revealed that Pseudomonas fuscovaginae and Sarocladium oryzae are independently associated with rice sheath Rot. Microbial Ecology, 80, 627–642. https://doi.org/10.1007/s00248-020-01529-2
Nordstedt, N., Chapin, L., Taylor, C., & Michelle, J. (2020). Identification of Pseudomonas spp. that increase ornamental crop quality during abiotic stress. Frontiers in Plant Science, 10, Article 1754. https://doi.org/10.3389/fpls.2019.01754
Nyambura, C., Njeri, V., Tani, A., & Wangari C. (2012). Isolation and identification of endophytic bacteria of bananas (Musa spp.) in Kenya and their potential as biofertilizers for sustainable banana production. African Journal of Microbiology Research, 6(34), 6414–6422. https://doi.org/10.5897/AJMR12.1112
Onasanya, A., Basso, A., Somado, E.A., Gasore, E.R., Nwilene, F.E., Ingelbrecht, J., & Onasanya, R.O. (2010). Development of a combined molecular diagnostic and DNA fingerprinting technique for rice bacteria pathogens in Africa. Biotechnology, 9(2), 89–105. https://doi.org/10.3923/biotech.2010.89.105
Oriana, P., Susca, L., Loconsole, G., Saponari, M., Boscia, D., Savino, V., & Martelli, G. P. (2015). Survey for the presence of Xylella fastidiosa subsp. pauca (strain CoDiRO) in some forestry and ornamental species in the Salento Peninsula. Journal of Plant Pathology, 97(2), 373–376. https://doi.org/10.4454/JPP.V97I2.031
Palacio-Bielsa, A., Cambra, M. A., & López, M. M. (2009). PCR detection and identification of plant-pathogenic bacteria: updated review of protocols (1989–2007). Journal of Plant Pathology, 91(2), 249–297.
Papan, C., & Arka, P. C. (2023). New report of endophytic bacterium Achromobacter xylosoxidans from root tissue of Musa paradisiaca. Research Square. https://doi.org/10.21203/rs.3.rs-2879522/v1
Posada, L., Ramírez, M., Ochoa-Gómez, N., Cuellar-Gaviria, T., Argel-Roldan, L., Ramírez, C., & Villegas-Escobar, V. (2016). Bioprospecting of aerobic endospore-forming bacteria with biotechnological potential for growth promotion of banana plants. Scientia Horticulturae, 212, 81–90. https://doi.org/10.1016/j.scienta.2016.09.040
Prasannakumar, S., Gowtham, H., Hariprasad, P., Shivaprasad, K., & Niranjana, S. (2015). Delftia tsuruhatensis WGR–UOM–BT1, a novel rhizobacterium with PGPR properties from Rauwolfia serpentina (L.) Benth. Ex Kurz also suppresses fungal phytopathogens by producing a new antibiotic—AMTM. Letters in Applied Microbiology, 61(5), 460–468. https://doi.org/10.1111/lam.12479
Prates, T., Nietsche, S., Costa, M., Xavier, A. A., Gomes, D., & Toledo, M. C. (2013). Potential use of endophytic bacteria to promote the plant growth of micropropagated banana cultivar Prata Anã. African Journal of Biotechnology, 12(31), 4915–4919. https://doi.org/10.5897/AJB2012.2958
Rangslang, R., Liu, Z., Lutken, H., & Trevenzoli, B. (2018). Agrobacterium spp. genes and ORFs: mechanisms and applications in plant science. Ciencia e Agrotecnologia, 42(5), 453–463. https://doi.org/10.1590/1413-70542018425000118
Retana-Sánchez, K., Castro-Zúñiga, O., Blanco-Meneses, M., & Quesada-González, A. (2019). Etiología de las pudriciones en el tallo de Hylocereus costaricensis, provocadas por Enterobacter hormaechei, en Costa Rica. Agronomía Costarricense, 43(2), 61–73. https://doi.org/10.15517/rac.v43i2.37949
Rojas-Rojas, F., López-Sánchez, D., Meza-Radilla, G., Méndez-Canarios, A., Ibarra, A., & Estrada-de los Santos, P. (2019). El controvertido complejo Burkholderia cepacia, un grupo de especies promotoras del crecimiento vegetal y patógenas de plantas, animales y humanos. Revista Argentina de Microbiología, 51(1), 84–92. https://doi.org/10.1016/j.ram.2018.01.002
Sahoo, R. K., Ansari, M. W., Pradhan, M., Dangar, T., Mohanty, S., & Tuteja, N. (2014). Phenotypic and molecular characterization of native Azospirillum strains from rice fields to improve crop productivity. Protoplasma, 251, 943–953. https://doi.org/10.1007/s00709-013-0607-7
Samy, A., Rajkuberan, C., Prabukumar, S., & Sivaramakrishnan, S. (2014). Evaluation of selective rhizobacteria as a bioinoculant on green gram (Vigna radiate L.) R. Wilczek. International Journal of Current Microbiology and Applied Sciences, 3(8), 988–998. https://www.ijcmas.com/vol-3-8/A.Anthoni%20Samy,%20et%20al.pdf
Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74(12), 5463–5467. https://doi.org/10.1073/pnas.74.12.5463
Sayers, E. W., Bolton, E. E., Brister, J. R., Canese, K., Chan, J., Comeau, D. C., Connor, R., Funk, K., Kelly, C., Kim, S., Madej, T., Marchler-Bauer, A., Lanczycki, C., Lathrop, S., Lu, Z., Thibaud-Nissen, F., Murphy, T., Phan, L., Skripchenko, Y., … Sherry, S. T. (2022). Database resources of the national center for biotechnology information. Nucleic Acids Research, 50(D1), D20–D26. https://doi.org/10.1093/nar/gkab1112
Shamsinah, N., & Suhaimi, M. (2017). Diversity of bacterial communities in bacterial wilt-diseased banana plants [Doctoral thesis, unpublished]. University of Malaya.
Silva, K., Silva, A., Siquiera, M., Bernardi, N., Castanho, M., Ramos, R., & Barbosa, E. (2016). Polyphasic analysis of Acidovorax citrulli strains from northeastern Brazil. Scientia Agricola, 73(3), 252–259. https://doi.org/10.1590/0103-9016-2015-0088
Singh, B. K., Trivedi, P., Egidi, E., Macdonald, C., & Delgado-Baquerizo, M. (2020). Crop microbiome and sustainable agriculture. Nature Reviews of Microbiology, 18, 601–602. https://doi.org/10.1038/s41579-020-00446-y
Snak, A., Vendruscolo, E., Santos, M., Fiorini, A., & Mesa, D. (2021). Genome sequencing and analysis of plant growth-promoting attributes from Leclercia adecarboxylata. Genetics and Molecular Biology, 44(1), Article e20200130. https://doi.org/10.1590/1678-4685-GMB-2020-0130
Souza, A., Cruz, J. C., Sousa, N., Procopio, A., & Silva, G. F. (2014). Endophytic bacteria from banana cultivars and their antifungal activity. Genetics and Molecular Research, 12(4), 8661–8670. http://dx.doi.org/10.4238/2014.October.27.6
Souza, S., Xavier, A., Costa, M., Cardoso, A., Pereira, M., & Nietsche, S. (2013). Endophytic bacterial diversity in banana ‘Prata Anã’ (Musa spp.) roots. Genetics and Molecular Biology, 36(2), 252–264. https://doi.org/10.1590/S1415-47572013000200016
Su, L., Shen, Z., Ruan, Y., Tao, C., Chao, Y., Li, R., & Shen, Q. (2017). Isolation of antagonistic endophytes from banana roots against Meloidogyne javanica and their effects on soil nematode community. Frontiers in Microbiology, 8, Article 2070. https://doi.org/10.3389/fmicb.2017.02070
Suleimanova, A. D., Itkina, D. L., Pudova, D. S., & Sharipova, M. R. (2021). Identification of Pantoea phytate-hydrolyzing rhizobacteria based on their phenotypic features and multilocus sequence analysis (MLSA). Microbiology, 90, 87–95. https://doi.org/10.1134/S0026261721010112
Suresh, P., Shanmugaiah, V., Rajagopal, R., Muthusamy, K., & Ramamoorthy, V. (2022). Pseudomonas fluorescens VSMKU3054 mediated induced systemic resistance in tomato against Ralstonia solanacearum. Physiological and Molecular Plant Pathology, 119, Article 101836. https://doi.org/10.1016/j.pmpp.2022.101836
Takeuchi, T., Sawada, H., Suzuki, F., & Matsuda, I. (1997). Specific detection of Burkholderia plantarii and B. glumae by PCR using primers selected from the 16S-23S rDNA spacer regions. Japanese Journal of Phytopathology, 63(6), 455–462. https://doi.org/10.3186/jjphytopath.63.455
Thomas, P., & Sekhar, A. C. (2017). Cultivation versus molecular analysis of banana (Musa sp.) shoot-tip tissue reveals enormous diversity of normally uncultivable endophytic bacteria. Microbial Ecology, 73, 885–899. https://doi.org/10.1007/s00248-016-0877-7
Walcott, R. R., & Gitaitis, R. D. (2000). Detection of Acidovorax avenae subsp. citrulli in watermelon seed using immunomagnetic separation and the polymerase chain reaction. Plant Disease, 84(4), 470–474. https://doi.org/10.1094/PDIS.2000.84.4.470
Wang, C., Kim, Y., Singh, P., Mathiyalagan, R., Jin, Y., & Yang, D. (2016). Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artificial Cells, Nanomedicine, and Biotechnology, 44(4), 1127–1132. https://doi.org/10.3109/21691401.2015.1011805
Wang, B., Yuan, J., Zhang, J., Shen, Z., Zhang, M., Li, R., Ruan, Y., & Shen, Q. (2013). Effects of novel bioorganic fertilizer produced by Bacillus amyloliquefaciens W19 on antagonism of Fusarium wilt of banana. Biology and Fertility of Soils, 49, 435–446. https://doi.org/10.1007/s00374-012-0739-5
Weber, O., Videira, S., & Simoes, J. (2013). Identification of culturable endophytes in ‘Champaka’ pineapple grown in an organic system. African Journal of Agricultural Research, 8(26), 3422–3430. https://academicjournals.org/journal/AJAR/article-full-text-pdf/C6FF84F36400
Weller-Stuart, T., De Maayer, P., & Coutinho, T. (2017). Pantoea ananatis: genomic insights into a versatile pathogen. Molecular Plant Pathology, 18, 1191–1198. https://doi.org/10.1111/mpp.12517
White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: a guide to methods and applications. Academic Press.
Xu, L., Zhang, H., Xing, Y. T., Li, N., Wang, S., & Sun, J. (2020). Complete genome sequence of Sphingobacterium psychroaquaticum strain SJ-25, an aerobic bacterium capable of suppressing fungal pathogens. Current Microbiology, 77, 115–122. https://doi.org/10.1007/s00284-019-01789-3
Zhang, L., Hu, Y., Chen, Y., Qi, D., Cai, B., Zhao, Y., Li, Z., Wang, Y., Nie, Z., Xie, J., & Wang, W. (2023). Cadmium-tolerant Bacillus cereus 2-7 alleviates the phytotoxicity of cadmium exposure in banana plantlets. Science of The Total Environment, 903, Article 166645. https://doi.org/10.1016/j.scitotenv.2023.166645
Zhirnov, V., Zadegan, R. M., Sandhu, G. S., Church, G. M., & Hughes, W. L. (2016). Nucleic acid memory. Nature Materials, 15(4), 366–370. https://doi.org/10.1038/nmat4594
Zhu, B., Zhou, Q., Lin, L., Hu, C., Shen, P., Yang, L., An, Q., Xie, G., & Li, Y. (2013). Enterobacter sacchari sp. nov., a nitrogen-fixing bacterium associated with sugar cane (Saccharum officinarum L.). International Journal of Systematic and Evolutionary Microbiology, 63(7), 2577–2582. https://doi.org/10.1099/ijs.0.045500-0
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Mónica Blanco-Meneses
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos morales de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución, no comercial y sin obra derivada de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista, no se puede hacer uso de la obra con propósitos comerciales y no se puede utilizar las publicaciones para remezclar, transformar o crear otra obra.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).