Resumen
Con la ayuda del software BALÍSTICA, desarrollado por el autor, fue posible analizar la posible trayectoria de un bloque balístico eyectado el 29 octubre del 2014, que impactó el puesto de guardaparques del volcán Turrialba, causando destrozos que pudieron ser mortales. En el análisis se pudo incorporar el concepto de que, en las primeras decenas de metros de recorrido, el fragmento fue arrastrado por la nube de gas y ceniza por lo que se mueve como un proyectil ideal. El resto del recorrido se supuso fue hecho en un régimen Newtoniano con coeficiente de arrastre Cd constante. Ambas etapas estuvieron afectadas por la asimetría del cráter. Bajo estas condiciones se calculó 125 ms-1 y 65° para la velocidad y ángulo de salida, de 83,3 ms-1 y 74,6° para la velocidad y ángulo de llegada, con un tiempo de vuelo 20,3 s (utilizando un Cd = 0,42 asociado a una semiesfera). Al final se incluyen unas recomendaciones generales sobre cómo construir los próximos refugios de manera que se reduzca el riego tanto de los guardaparques como de los visitantes.
Citas
Alatorre-Ibarguengoitia, M. A., Morales-Iglesias, H., Ramos-Hernandez, S. G., Jon-Selvas, J., y Jimenez-Aguilar, J. M. (2016). Hazard zoning for volcanic ballistic impacts at El Chichn Volcano (Mexico). Natural Hazards, 81(3), 1733-1744.
Alam, F., Steiner, T., Chowdhury, H., Moria, H., Khan, I., Aldawi,F., y Subic, A. (2011). A study of golf ball aerodynamic drag. Procedia Engineering, 13, 226-231.
Biass, S, Falcone, J-L, Bonadonna, C., Di Traglia, F., Pistolesi, M., Rosi, M., y Lestuzzi, P. (2016). Great Balls of Fire: A probabilistic approach to quantify the hazard related to ballistics - A case study at La Fossa volcano, Vulcano Island, Italy. Journal of Volcan ology and Geothermal Research, 325, 1-14
Blong, R. (1981). Some effects of tephra falls on buildings. En S. Self y R. S. J. Sparks (eds.), Tephra studies (pp. 405–420), Dordrecht: Springer.
Bower, S. M., y Woods, A. W. (1996). On the dispersal of clasts from volcanic craters during small explosive eruptions. Journal of Volcanology and Geothermal, 73, 19 -32. EN EL TEXTO SE INDICA 1995
Breard E. C. P. , Lube G, Cronin S. J., Fitzgerald, R., Kennedy, B., Scheu, B., Montanaro, C., White, J. D. L., Tost, M., Procter, J. N., y Moebis A. (2014) Using the spatial distribution and lithology of ballistic blocks to interpret eruption sequence and dynamics: August 6 2012 Upper Te Maari eruption, New Zealand. Journal of Volcanology and Geothermal Research, 286, 373-386.
Chouet, B., Hamisevicz, N., y McGetchin, T. R. (1974). Photoballistics of volcanic jet activity at Stromboli, Italy. Journal of Geophysical Research, 79(32), 4961-4976.
Clarke, A. B. (2012). Unsteady explosive activity: vulcanian eruptions. En A. Fagents, T. K. P. Gregg y R. M. C. Lopes (eds), Modeling volcanic processes (pp. 129-152). Cambridge: Cambridge University Press.
Choi, J., Jeon, W.-P., y Choi, H. (2006). Mechanism of drag reduction by dimples on a sphere. Physics of fluids, 18, 041702.
D’Elia L., Paez, G., Hernando, I. R., Petrinovic, I. A., Lopez, L., Kurten, G., y Vigiani, L. (2020) Hydrothermal eruptions at El Humazo, Domuyo geothermal field, Argentina: Insights into the eruptive dynamics and controls. Journal of Volcanology and Geothermal Research, 393. doi: 10.1016/j.jvolgeores.2020.106786
De’ Michieli Vitturi, M., Neri, A., Ongaro, E., Savio, S., y Boschi, E. (2010). Lagrangian modeling of large volcanic particles: Application to Vulcanian explosions. Journal of Geophysical Research (Solid Earth), 115, B08206. doi: 10.1029/2009JB007111
Fagents, S. A., y Wilson, L. (1993). Explosive volcanic eruptions- VII The range of pyroclasts ejected in transient volcanic explosions. Geophysical Journal International, 113, 359-370.
Fitzgerald, R. H., Tsunematus, K., Kennedy, B. M., Breard, E. C. P., Lube, G., Wilson, T. M., Jolly, A. D., Pawson, J., Rosemberg, M. D., y Conin, S. J. (2014). The application of a calibrated 3D ballistic trayectory model to ballistic hazards assesment at Upper Te Maari, Tongarino. Journal of Volcanology and Geothermal Research, 286, 248-262.
Formenti, Y., Druitt, T. H., y Kelfoun, K. (2003). Characerization of the 1997 Vulcanian explosions of Soufriere Hills Volcano, Monserrat, by video analysis, I. Bulletin of Volcanology, 65(8), 587-605.
Fudali, R. F., y Melson, W. G. (1972). Ejecta velocities, magma chamber pressures, and kinetic energy associated with the 1968 eruption of Arenal Volcano. Bulletin of Volcanology, 35, 381-401.
Giordano G., y De Astis, G., (2021). The summer 2019 basaltic Vulcanian eruptions (paroxysms) of Stromboli. Bulletin of Volcanology, 83(1). doi: 10.1007/s00445-020-01423-2
Graettinger, A. H., Valentine, G. A., Sonder, I., Ross, P.-S., y White, J. D. L. (2015). Facies distribution of ejecta in analog tephra rings from experiments with single and multiple subsurface explosions. Bulletin of Volcanology, 77. doi: 10.1007/s00445-015-0951-x
Jenkins, S. F., Spence, R. J. S., Fonseca, J. F. B. D., Solidum, R. U., y Wilson, T. M. (2014). Volcanic risk assessment: Quantifying physical vulnerability in the built environment. Journal of Volcanology and Geothermal Research, 276, 105-120. doi: 10.1016/j.jvolgeores.2014.03.002
Kaneko T., Maeno F., y Nakada S. (2016). 2014 Mount Ontake eruption: characteristics of the phreatic eruption as inferred from aerial observations. Earth Planets and Space, 68. doi: 10.1186/s40623-016-0452-y
Kilgour, G., Manville V., Della Pasqua F., Graettinger A., Hodgson K. A., y Jolly, G. E. (2010). The 25 September 2007 eruption of Mount Ruapehu, New Zealand: Directed ballistics, surtseyan jets, and ice-slurry lahars. Journal of Volcanology and Geothermal Research, 191(1-2), 1-14.
Li, Q. M., Reid, S. R., y Ahmad-Zaidi, A. M. (2006). Critical impact energies for scabbing and perforation of concrete target. Nuclear Engineering and Design, 236, 1140-1148.
Lorenz, V. (1970). Some aspects of the eruption mechanism of the Big Hole Maar, Central Oregon.- Geological Society of America Bulletin, 81, 1823-1830.
Mastin, L. G., (2001). A simple calculator of ballistic trajectories for blocks ejected during volcanic eruptions. U.S. Geological Survey Open File Report, 2001-45. doi: 10.3133/ofr0145
Morrissey, M. M., y Chouet, B. A. (1997). Burst conditions of explosive volcanic eruptions recorded on microbarographs. Science, 275, 1290-1293.
Nardone, P., y Koll, K. (2018). Velocity field and drag force measurements of a cube and a hemisphere mounted on an artificial bed surface roughness. E3S Web of Conferences, 40, 05022. doi: 10.1051/e3sconf/20184005022
Núñez-Corrales, S., y Brenes-André, J. (2021). BALISTICA (Version 1.0.0) [software]. Recuperado de https://github.com/RECIEM/Balistica
Oikawa, T., Yoshimoto, M., Nakada, S., Maeno, F., Komori, J., Shimano, T., Takeshita, Y., Ishizuka, y., Ishimine, Y. (2016). Reconstruction of the 2014 eruption sequence of Ontake Volcano from recorded images and interviews. Earth Planets and Space, 68(79). doi: 10.1186/s40623-016-0458-5 EN EL TEXTO SE INDICA 2014
Oliphant, T. E. (2007). Python for scientific computing. Computing in science & engineering, 9(3), 10-20.
Self, S., Kienle, J., y Huot, J. P., (1980). Unkinrek maars, Alaska; II. Deposits and formation of the 1977 craters. Journal of Volcanology and Geothermal Research, 7, 39-65.
Shapiro, A. H., (1953). The dynamics and thermodynamics of compressible fluid flow. Nueva York: McGraw-Hill.
Steinberg, G. S., y Babenko, J. J. (1978). Experimental velocity and density determination of volcanic gases during eruption. Journal of Volcanology and Geothermal Research, 3, 89-98
Steinberg, G. S., y Lorenz, V. (1983). External ballistic of volcanic explosions. Bulletin Volcanologique, 46, 333-348. doi: 10.1007/BF02597769
Taddeucci, J., Alatorre-Ibarguengoitia, M. A., Palladino, D. M., Scarlato, P., y Camaldo, C. (2015). High-speed imaging of Strombolian eruptions: gas-pyroclast dynamics in initial volcanic jets. Geophysical Research Letters, 42(15). doi: 10.1002/2015GL064874
Taddeucci, J., Alatorre-Ibarguengoitia, M., Moroni, M., Tornetta, L., Capponi, A., Scarlato, P., Dingwell, y De Rita, D. (2012). Physical parameterization of Strombolian eruptions via experimentally-validated modeling of high-speed observations. Geophysical Research Letters, 39(16). doi: 10.1029/2012GL052772
Tsunematsu, K., Chopard, B., Falcone, J.-L., y Bonadonna C. (2014) A numerical model of ballistic transport with collisions in a volcanic setting. Computers & Geosciences, 63, 62-69.
Williams, G. T., Kennedy, S. M., Wilson, T. M., Fitzgerald, R. H., Tsunematsu, K., y Teissier, A. (2017) Buildings vs. ballistics: Quantifying the vulnerability of buildings to volcanic ballistic impacts using field studies and pneumatic cannon experiments. Journal of Volcanology and Geothermal Research, 343, 171-180. doi: 10.1016/j.jvolgeores.2017.06.026
Wilson, L. (1972). Explosive volcanic eruptions - II The athmospheric trajectories of pyroclasts. Geophysical Journal International, 30(4), 381-392.
Wilson, L. (1980). Relationships between pressure, volatile content and ejecta velocity in three types of volcanic explosions. Journal of Volcanology and Geothermal Research, 8, 297-313. doi: https://doi.org/10.1016/0377-0273(80)90110-9
Wilson, L., Sparks, R. S. J., y Walker, G. P. L., (1980). Explosive volcanic eruptions - IV The control of magma properties and conduit geometry on eruption column behaviour. Geophysical Journal International, 63, 117-148.
Woods, A. W. (1988). The fluid dynamics and thermodynamics of eruption columns. Bulletin of Volcanology, 50, 169-193.
Woods, A. W. (1995). A model of vulcanian explosions. Nuclear Engineering and Design, 155, 345-357.
Yamada, H., Tateyama, K., Sasaki, H., Naruke, S., Kishimoto, H. y Yoshimoto, M. (2018) Impact resistance to ballistic ejecta of wooden buildings and a simple reinforcement method using aramid fabric. Journal of Volcanology and Geothermal Research, 359, 37-46.
##plugins.facebook.comentarios##
Esta obra está bajo una licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0.
Derechos de autor 2022 José Brenes-André