Revista geológica de América central ISSN Impreso: 0256-7024 ISSN electrónico: 2215-261X

OAI: https://revistas.ucr.ac.cr/index.php/geologica/oai
Incorporation of Landau Model to the Fractal Model of an eruption
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

Keywords

Balankin
Landau
Brown
Griffith
Sequential fragmentation/transport
SFT
Balankin
Landau
Griffith
Transición del vidrio
Fragmentación secuencial
SFT

How to Cite

Brenes-André, J. (2016). Incorporation of Landau Model to the Fractal Model of an eruption. Revista geológica De América Central, 54. https://doi.org/10.15517/rgac.v54i0.21147

Abstract

The Sequential Fragmentation/Transport model (SFT) is based on a macroscopic level sequential fragmentation. In Brenes & Alvarado (2013) a fractal model of an eruption is proposed based on SFT, systematizing  the process via the inclusion of Hurst Coefficient. Later on, Balankin fractal fracture model is used to include microscopic level fractal fracture processes (Brenes, 2014). In the present work, Landau model for second order transformations is included, and Griffith fracture model and Eötvös rule are deduced, giving rise to by-products mathematical expressions that suggest the existence of fracture processes such as stress corrosion, dilatancy hardening, and vitrification. Lastly, some mathematical results that suggest a glass transition in magma are presented.
https://doi.org/10.15517/rgac.v54i0.21147
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

References

ANGELL, C. A., NGAI, K. L., MCKENNA, G. B., MCMILLAN, P. F., & MARTIN, S. W.,2000: Relaxation in glassforming liquids and amorphous solids.- App. Phys. Rev. 88(6): 3113-3157

BAI, Y. L., LU, C., KE, F. J. & XIE, M. F., 1994. Evolution induced catastrophe.- Phys. Lett. A, 185: 196-200.

BALANKIN, A., 1996: Mechanics of self-affine cracks: the concept of equivalent traction, path integrals and energy release rate.- Rev. Mexicana de Física, 42(2): 161-171.

BALANKIN, A., 1997: Physics of fracture and mechanics of self-affine cracks.- Eng. Frac. Mech. 57: 135-203.

BARBERO, G., GABBASOVA, Z. & MIRALDI, E., 1991- On the surface tension behavior near the critical temperature.- Mod. Phys. Lett. B5: 753

BARNES, R. B. 1933: The Plasticity of Rocksalt and Its Dependence upon Water.- Phys. Rev. 44: 898

BRENES, J., 2013: Aplicación de la teoría de fragmentación/transporte secuencial a los depósitos de las erupciones 1723 y 1963-65 del Irazú, Costa Rica. Caso dispersión negativa.- Rev. Geol. Amér. Central, 48: 63-85, 2013

BRENES, J., 2014: Aplicación del modelo de fractura fractal de Balankin al modelo fractal de actividad volcánica.- Rev. Geol. Amér. Central, 50: 83-98.

BRENES, J., & ALVARADO, G. E., 2013: Aplicación de la teoría de fragmentación/transporte secuencial a los depósitos de las erupciones 1723 y 1963-65 del Irazú, Costa Rica. Caso dispersión positive y modelo fractal.- Rev. Geol. Amér. Central, 48: 87-98.

BROWN, W. K., 1989: A theory of sequential fragmentation and its astronomical applications.- J. Astrophys. Astr. 10: 89-112.

BUCKLEY, D. 1981: Surface effects in adhesion, friction, wear, and lubrication.- 630 pags. Elsevier Scientific Publishing Company, The Netherlands.

BURTON, W. K., CABRERA, N. & FRANK, F. C. 1951: Phil. Trans. R. Soc. (London), 243: 299-

CORRADINI, M. L., 1981: Phenomenological modelling of the triggering phase of small-scale steam explosions experiments.- Nucl. Sci. Eng. 78: 154-170.

COTTRELL, A. H., 1958: Theory of brittle facture in steel and similar metals.- Trans. Metallurgical Soc. AIME, 212:192-203.

DEBENEDETTI, P. G.; STILLINGER, 2001: Supercooled liquids and the glass transition.- Nature, 410(6825): 259–267.

DINGWELL, D., 1997: The Brittle–Ductile Transition in High-Level Granitic Magmas: Material Constraints.- J. Petrolog. 38(12): 1635-1644.

FERREIRA M. L. & APARICIO, C. 2007- Data classification with the Vogel–Fulcher–Tammann–Hesse viscosity equation using correspondence analysis.- Physica B398: 71-77.

GOLDSTEIN, M. 1980: Thermodynamic aspects of the glass transition: The applicability of the Landau theory of second-order transitions.- J. Macromolecular Sci. PartB: Physics, 18: 445-452.

GONNERMANN, H. M. & MANGA, M., 2003: Explosive volcanism may not be an inevitable consequence of magma fragmentation.- Nature, 426: 432-435.

GUARINO, A., GARCIMART, A., & CILIBERTO, S., 1998: An experimental test of the critical behavior of fracture precursors.- Eur. Phys. J. B6: 13-24

IMRY, Y. & MA, S., 1975: Random-Field Instability of the Ordered State of Continuous Symmetry.- Phys. Rev. Lett. 35: 1399-1401

IRWIN, G., 1947: Fracture Dynamics. Fracturing of Metals.- Book of papers presented at the seminar on the fracturing of metals held during the Twenty-Ninth National Metal Congress and Exposion. Chicago 18-24 October. Cleveland, Ohio: 147 – 166

JAUPART, C. & VERGNIOLLE, S. 1989: The generation and collapse of a foam layer at the roof of a basaltic magma chamber.- J. Fluid Mech., 203: 347-380.

KREIDLER, E. R. & ANDERSON, P. M., 1996: Orowan-based deformation model for layered metallic materials.- Mat. Res. Soc. Symp. Proc. 434: 159-170.

KUHN, C. & MÜLLER, R., 2011: On an Energetic Interpretation of a Phase Field Model for Fracture.- PAMM. Proc. Appl. Math. Mech. 11: 159-160, doi: 10.1002/pamm.201110071.

LANDAU, L.D. & LIFSCHITZ, E.M. 1988: Física Estadística, vol. 5 del Curso de Física Teórica. Editorial Reverté, Barcelona.

LU, C., 2007. Some notes on the study of fractals in fracture. In Proceedings of 5th Australasian Congress on Applied Mechanics, ACAM 2007, Brisbane, Australia: 234-239.

LU, C.; KE, F. J.; BAI, Y. L. & XIA, M. F., 1995. Numerical simulation of evolution induced catastrophe, Sci. China Ser. A 38: 462-471.

NEAL-STURGESS, C. E., 2008: A Direct Derivation of the Griffith-Irwin Relationship using a Crack tip Unloading Stress Wave Model.- arXiv 0810.2218.

OJOVAN, M. I., 2004: Glass formation in amorphous SiO2 as a percolation phase transition in a system of network defects.- J. Experimental and Theoretical Physics, Letters, 79(12): 632.

OROWAN, E., 1950: Fundamentals of brittle behavior in metals. En: W. M. Murray & J. C. Hunsaker (eds.), Fatique and Fracture of Metals, Book of papers presented at the Symposium held at the Massuchusetts Institute of Technology. Massachusetts, 19 - 22 June.- The Technology press of the Massachusetts Institute of Technology and John Wiley & Sons, Inc., New York: 139-167.

SANTAOJA, K., 1992: Basics of “Griffith’s fracture mechanics”.- Rakenteiden Mekaniikka, 25(3): 3-23.

SETHNA, J. , SHORE, J. & HUANG, M., 1991: Scaling theory for the glass transition.- Phys. Rev. B, 44: 4943- 4959.

SPARKS, R. S. J., 1978- The dynamics of bubble formation and growth in magmas: A review and analysis.- J. Volcan. Geotherm. Res. 3 : 1-37.

SPARKS, R. S. J., 2003: Dynamics of magma degassing.- Geol. Soc. London, Spec.Pub. 213: 5-22, doi: 10.1144/GSL.SP.2003.213.01.02

TUFFEN, H., DINGWELL, D. B., PINKERTON, H., 2003: Repeated fracture and healing of silicic magma generate flow banding and earthquakes?.- Geology, 31(12): 1089–1092.

TUFFEN, H., SMITH, R. & SAMMONDS, P. R. 2008: Evidence for seismogenic fracture of silicic magma.- Nature, 453: 511-514.

VERGNIOLLE, S. & JAUPART, C. 1990: Dynamics o degassing at Klauea Volcano, Hawaii.- J. Geophys. Res., 101: 20 433- 20 447.

WILLIFORD, R. E. 1987. A Similarity Analysis of Fracture.- Proceedings of the December 1987 Winter Annual Meeting, ASME, CIUDAD: 39-44.

WILSON, L. & HEAD, J. W. 1981: Ascent and eruption of basaltic magma on the Earth and Moon.- J. Geophys. Res. 86: 2971-3001.

WOHLETZ, K., 1983: Mechanisms of hydrovolcanic pyroclast formation: grain-sie, scanning electronic microscopy, and experimental estudies.- J. Volcan. Geother. Res. 17: 31-63.

WOHLETZ, K. H., 1986, Explosive magma-water interactions: Thermodynamics, explosion mechanisms, and field studies.- Bull. Volcanol. 48: 245-264.

WOHLETZ, K. H., SHERIDAN, M. F. & BROWN, K., 1989: Particle size distribution and the sequential fragmentation/transport theory applied to volcanic ash.- J. Geophys. Res. 94: 15,703-15,721.

ZHANG, Y. X., 1999: A criterion for the fragmentation of bubbly magma based on brittle failure theory.- Nature, 402: 648-650

ZUREK, W. H. & DORNER, U., 2008: Phase transition in space: how far does a symmetry bend before it breaks?.- Phil. Trans. R. Soc. A 366, 2953–2972, doi:10.1098/rsta.2008.0069.

Comments

Downloads

Download data is not yet available.