Ingeniería ISSN Impreso: 1409-2441 ISSN electrónico: 2215-2652

OAI: https://revistas.ucr.ac.cr/index.php/ingenieria/oai
Understanding sustainability from an exergetic frame in complex adaptive systems
PDF (Español (España))
HTML (Español (España))

Keywords

Sustainable development
thermodynamics- mathematical modelling
thermodynamics- measu- rements
environmental protection
environmental management.
Desarrollo sostenible
termodinámica-modelos matemáticos
termodinámica- mediciones
pro- tección del medio ambiente
gestión ambiental.

How to Cite

Aguilar-Hernández, G. A. (2017). Understanding sustainability from an exergetic frame in complex adaptive systems. Ingeniería, 27(1), 135–142. https://doi.org/10.15517/jte.v27i1.25524

Abstract

The sustainability concept has been applied in a number of fields, which has generated different definitions of sustainability. The following paper has critically developed a conceptual framework for defining sustainability based on thermodynamics properties, which can be applied to complex adaptive systems (CAS). First, there is a description of the general perception of sustainable development and the conceptual limitations to evaluate the interaction between a system and its surroundings. Then, the CAS’s properties and the impact of resource restriction were critically evaluated and irreversibility on the CAS’s conditions was defined. This brought a broad understanding about the effects on CAS, based on the first and second law of thermodynamics. From this analysis, the exergetic aspect emerged as a fundamental property for defining sustainability in the CAS’s context. This shows opportunities for developing studies based on thermodynamics properties in multiple systems, such as economic, social and ecological fields, which would require an interdisciplinary approach to generate an integral framework on the application of sustainability definition.
https://doi.org/10.15517/jte.v27i1.25524
PDF (Español (España))
HTML (Español (España))

References

MCJD. Simposio la Costa Rica del año 2000: documentos. San José; 1977.

Mebratu D. Sustainability and sustainable development: historical and conceptual review. Environ Impact Assess Rev. 1998;18(6):493–520.

Glavič P, Lukman R. Review of sustainability terms and their definitions. J Clean Prod. 2007;15(18):1875–85.

Hugé, J., Waas, T., Dahdouh-Guebas, F., Koedam, N., & Block T. A discourse-analytical perspective on sustainability assessment: interpreting sustainable development in practice. Sus. 2013;8(2):197–8.

IPCC. Climate Change 2013 The Physical Science Basis [Internet]. 2013. Disponible en: http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_TS_FINAL.pdf

Mata-Segreda JF. ¿Qué hay de erróneo con sustentabilidad ambiental? San José; 2006.

Mora-Casal RA. Crítica del concepto de exergía. Ingeniería. 2015;25(1):1409–2241.

McMichae A, Butler C, Folke C. New Visions for addressing sustainability. Science. 2003;302(5352):1919–20.

Lele SM. Sustainable development: a critical review. World Dev. 1991;19(6):607–21.

Harlow J, Golub A, Allenby B. A review of utopian themes in sustainable development discourse. Sustain Dev. 2013;21(4):270–80.

Levin SA. Ecosystems and the biosphere as complex adaptive systems. Ecosystems. 1998;1(5):431–6.

Dietz T, Ostrom E, Stern PC. The struggle to govern the commons. science. 2003;302(5652):1907-12.

Hardin G. The tragedy of the commons. Science. 1968;162(3859):1243–8.

Bejan A, Lorente S. The constructal law of design and evolution in nature. Philos Trans R Soc B Biol Sci. 2010;365(1545):1335-47.

Qian H. Stochastic physics, complex systems and biology. Quant Biol. 2013;1(1):50–3.

Lucia U. Stationary open systems: A brief review on contemporary theories on irreversibility. Phys A Stat Mech its Appl. 2013;392(5):1051–62.

Ozawa H, Ohmura A, Lorenz RD, Pujol T. The second law of thermodynamics and the global climate system: a review of the maximum entropy production principle. Rev Geophys. 2003;41(4).

Dincer I, Kanoglu M, Rosen MA. Exergy - Energy, Environment, and Sustainable Development. Amsterdam: Elsevier; 2013. 6-10, 59-65.

Hepbasli A. A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renew Sustain Energy Rev. 2008;12(3):593–661.

Dincer I, Kanoglu M, Rosen MA. Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy. 2008;36(1):128–37.

Wall G, Banhatti DG. Exergy: A Useful Concept for Ecology and Sustainability. In Knowledge Systems of Societies for Adaptation and Mitigation of Impacts of Climate Change. 2013: 477-488.

Rosen MA, Dincer I, Kanoglu M. Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy policy. 2008;36(1):128-37.

Dietz S, Neumayer E. Weak and strong sustainability in the SEEA: Concepts and measure-

ment. Ecological economics. 2007;61(4):617-26.

UNSTATS. System of Environmental-Economic Accounting 2012 Experimental Ecosystem Accounting [Internet]. 2014. Disponible en: http://ec.europa.eu/eurostat/docu-

ments/3859598/6925551/KS-05-14-103-EN-N.pdf

Comments

Downloads

Download data is not yet available.