Ingeniería ISSN Impreso: 1409-2441 ISSN electrónico: 2215-2652

OAI: https://revistas.ucr.ac.cr/index.php/ingenieria/oai
Thermal and physiochemical properties of pellets with power aims made of sawmill residual product
PDF (Español (España))
HTML (Español (España))

Keywords

Pellets-production
biomass energy-production
pellets
waste management
forest biomass
uses of wood.
Biomasa
biocombustibles
pellets
propiedades térmicas
propiedades fisicoquímicas.

How to Cite

Casanova, P., Solís, K., & Carrillo, T. (2017). Thermal and physiochemical properties of pellets with power aims made of sawmill residual product. Ingeniería, 27(1), 57–74. https://doi.org/10.15517/jte.v27i1.25852

Abstract

Sawmill residual product of Pylon (Hyeronima alchorneoides) and Eucalyptus (Eucalyptus spp) species was used to produce pellets under different conditions of densification. Experimental equipment was used to determine the thermal conductivity, thermal diffusivity and specific heat. Physicochemical properties of the pellets obtained under different conditions of densification, such as ash content and calorific value were determined. The content of nitrogen, chlorine and sulfur present in the material used to produce the pellets was estimated. Thermal conductivity values were determined between 0,253 W/mK and 0,279 W/mK; 1,748 m2/s and 2,314 m2/s for the thermal diffusivity, and in the case of specific heat values between 3,019 kJ/kgK and 2,183
kJ/kgK were determined. The high heat values was between 18 907 kJ/kg and 18 960 kJ/kg, an ash content of 1,31 % on a dry basis was determined. Finally, it was determined that the content of nitrogen, chlorine and sulfur present in the residual biomass used, corresponds to 0,1129 %, 0,0592 % and 0,0317 %, respectively. A direct relationship between increasing the bulk density of the pellets and the thermal properties was determined. The calorific value and ash content were not significantly affected by the treatments applied. The estimated content of N, Cl and S corresponds to that expected in the selected biomass. Comparison of the properties of the pellets produced under the conditions studied -densification, against regulations-, showed acceptable results, entering these in terms of different categories of quality.
https://doi.org/10.15517/jte.v27i1.25852
PDF (Español (España))
HTML (Español (España))

References

Liu Z, Liu X, Fei B, Jiang Z, Cai Z, Yu Y. The properties of pellets from mixing bamboo and rice straw. Renew Energy. Elsevier Ltd; 2013;55:1–5.

Carroll JP, Finnan J. Physical and chemical properties of pellets from energy crops and cereal straws. Biosyst Eng [Internet]. 2012 Jun;112(2):151–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1537511012000608

Fasina O, Sokhansanj S. Bulk thermal properties of alfalfa pellets. Can Biosyst Eng. 1995;37(2):91–5.

Guo W, Lim J, Sokhansanj S, Bi X, Melin S. Determination of Thermal Conductivity of Wood Pellets Using Line Heat Source Method. In: 2009 Reno, Nevada, June 21 - June 24, 2009. St. Joseph, MI: American Society of Agricultural and Biological Engineers; 2009.

Ramaswamy H, Vijaya Raghavan G, Chakraverty A, Mujumdar A, editors. Handbook of Postharvest Technology [Internet]. CRC Press; 2003. Available from: http://www.crcnetbase.com/doi/book/10.1201/9780203911310

Serrano C, Monedero E, Lapuerta M, Portero H. Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Process Technol [Internet]. 2011 Mar;92(3):699–706. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0378382010003942

Telmo C, Lousada J. Heating values of wood pellets from different species. Biomass and Bioenergy. Elsevier Ltd; 2011;35(7):2634–9.

Obernberger I, Brunner T, Barnthaler G. Chemical properties of solid biofuels—significance and impact. Biomass and Bioenergy. 2006;30(11):973–82.

Obernberger I, Thek G. The Pellet Handbook. London, UK: Earthscan; 2010.

Bitra VSP, Banu S, Ramakrishna P, Narender G, Womac AR. Moisture dependent thermal properties of peanut pods, kernels, and shells. Biosyst Eng [Internet]. 2010 Aug;106(4):503–12. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1537511010001236

Incropera FP, DeWitt DP, Bergman TL, Lavine AS. Fundamentals of Heat and Mass Transfer. Incropera FP, Incropera FPFOH, Transfer M, editors. Water. John Wiley & Sons. Vol 6, Dekker Mechanical Engineering. 2007. 997 p.

Moura J, Devilla I, Martins D. Seminário de Iniciação Científica. In: Propriedades térmicas dos grãos de quinoa (Chenopodium quinua, Wild). Goiás, Brasil; 2010. p. 1–6.

Cabral J, Tatiane D, Braga M, Mitiko M, Behling C, Dias P, et al. Produção de briquetes e péletes a partir de resíduos agrícolas, agroindustrais e florestais. Brasil; 2012.

García-Maraver A, Popov V, Zamorano M. A review of European standards for pellet quality. Renew Energy [Internet]. Elsevier Ltd; 2011;36(12):3537–40. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0960148111002394

Sjöström J, Blomqvist P. Direct measurements of thermal properties of wood pellets: Elevated temperatures, fine fractions and moisture content. Fuel. 2014;134:460–6.

Guo W, Lim CJ, Bi X, Sokhansanj S, Melin S. Determination of effective thermal conductivity and specific heat capacity of wood pellets. Fuel. Elsevier Ltd; 2013;103:347–55.

Poddar S, Kamruzzaman M, Sujan SM a., Hossain M, Jamal MS, Gafur M a., et al. Effect of compression pressure on lignocellulosic biomass pellet to improve fuel properties: Higher heating value. Fuel. Elsevier Ltd; 2014;131:43–8.

Comments

Downloads

Download data is not yet available.