Ingeniería ISSN Impreso: 1409-2441 ISSN electrónico: 2215-2652

OAI: https://revistas.ucr.ac.cr/index.php/ingenieria/oai
Development of a Virtual Model for Stainless Steel Forming
PDF (Español (España))
HTML (Español (España))

Keywords

Forming process
neutral fiber
K factor
stainless steel
CAD
finite element analysis.
Conformado
fibra neutra
factor K
aceros inoxidables
CAD
análisis por elementos finitos.

How to Cite

Bravo Vargas, S. (2017). Development of a Virtual Model for Stainless Steel Forming. Ingeniería, 28(1), 1–14. https://doi.org/10.15517/ri.v28i1.29257

Abstract

In this paper, a virtual model in ANSYS for the forming process of stainless steels whichallows obtaining the neutral fiber is presented. The neutral fiber, also known as K factor, allows determining the blank of a piece for its later forming. Due to the complexity of the forming processes in the industry, such as bending, shaping, and stamping, it is necessary to perform computational analyses. It is important to count on models that allow understanding the behavior
of the material during its processi ng to reduce subsequent manufacturing mistakes. In this paper,a finite element-based analysis method for the forming process of stainless steels is proposed, and also its comparison with physical experimentation is presented. A particular bending process was characterized and its comparison with physical tests of 201 and 304 stainless steels was undertaken. Such comparison shows a difference of 0.4 percent between them. The obtained K factor could be used directly for analytical calculations of the blank of parts or for the software development of sheet metal forming.
https://doi.org/10.15517/ri.v28i1.29257
PDF (Español (España))
HTML (Español (España))

References

Al-Momani, E. (2008) An Application of Finite Element Method and Design of Experiments in the Optimization of Sheet Metal Blanking Process. Jordan Journal of Mechanical and Industrial Engineering, 2(1), 53-63.

Amor E. (2009). Modelización Numérica del Plegado de los Aceros Inoxidables Austeníticos. Madrid: Escuela Politécnica Superior Carlos III de Madrid.

ASM Handbook Vol.14. (1988). ASM International.

ASTM A480/A480M. (2002). Standard Requirements for Flat-Rolled Stainless and Heat-Resisting Steel Plate, Sheet, and Strip. ASTM International.

ASTM A666/A666M. (2002). Specification for Austenitic Stainless Steel Sheet, Strip, Plate, and Flat Bar. ASTM International.

Balon, P., Swiatoniowski, A. y Szostak, J. (2016). Improved Method of Springback Compensation in Metal Forming Analysis. Journal of Kones Powertrain and Transport, 19(3), 459-468.

Banabic, D. (2010). Sheet Metal Forming Processes. Rumania: Springer.

Castro, L. F. (2010). Condiciones Técnicas para un Correcto Doblado. Metal Actual, 15(5), 16-23

EN 10088-1:2014. (2015). Stainless steels. España: AENOR.

Fuh-Kuo, C. y Shen-Fu, K. (2006). Deformation Analysis of Springback in L-bending of Sheet, Metal. Journal of Achievements in Materials and Manufacturing Engineering, 18(2), 339-342.

García-Romeu, M. L. (2005). Contribución al Estudio del Proceso de Doblado al Aire de Chapa. Modelo de Predicción del Ángulo de Recuperación y del Radio de Doblado Final. Girona: Universidad de Girona.

Kalpakjian, S. y Schmid, S. (2006). Manufacturing Engineering and Technology. Estados Unidos: Editorial Prentice Hall.

Lange, K. (1997). Modern Metal Forming Technology for Industrial Production. Journal of Materials Processing Technology, 71(1), 2-13.

Laufgang, S. (2003). Aceros Inoxidables. Perú: Termo Soldex S.A.

Manual TRUMPF. (2013). Estados Unidos: Bending Technology.

Marciniak, Z., Duncan, J.L. y Hu S.J. (2002). Mechanics of Sheet Metal Forming. Inglaterra: Butterworth Heinemann.

Moaveni, S. (1999). Finite Element Analysis. Theory and Applications with ANSYS. Estados Unidos: Prentice Hall.

Webb, R. D. y Hardt, D. E. (1991). A Transfer Function Description of Sheet Metal Forming for Process Control. Journal of Engineering for Industry, 44(5), 44-52.

You-Min, H. (2003). An Elasto-Plastic Finite-Element Analysis of Sheet Metal Camber Process. Journal of Materials Processing Technology, 140(20), 432-440.

Zahid, F., Waheed, S. y Liaqat, A. (2016). Sheet Metal Bend Sequence Planning Subjected to Process and Material variations. The International Journal of Advanced Manufacturing Technology, 88(4), 815-826.

Comments

Downloads

Download data is not yet available.