Abstract
The Earthquake Engineering Laboratory at the University of Costa Rica has been operating an automatic earthquake processing system that started in 2010. That system processes information gathered from over 120 digital triaxial accelerometers which are connected to the Internet. They are part of the laboratory’s strong motion network. When an earthquake occurs, the system calculates the location and magnitude of the event as well as the peak ground acceleration and velocity, and the response and design spectra for each of the stations that are online at the moment. The system is written in modular programming, and the full report that is generated takes about ten minutes. However, whenever a module finishes processing the data, the information is immediately uploaded to the website at www.lis.ucr.ac.cr.References
Andrews, D.J. (1986). Objective determination of source parameters and similarity of earthquakes of different size. Geophysical Monographs, 37(6), 259-267.
Applied Technology Council (1984). Tentative Provisions for the Development of Seismic Regulations for Buildings, ATC-3-06. California: National Bureau of Standards.
Applied Technology Council (1995). A Critical Review of Approaches to Earthquake Resistant Design, ATC-34. California: National Bureau of Standards.
Arias, A. (1970). A Measure of Earthquake Intensity. En R.J. Hansen (ed.) Seismic Design for Nuclear Power Plants (pp. 438-483). Massachusetts: MIT Press.
Colegio Federado de Ingenieros y de Arquitectos (2010). Código Sísmico de Costa Rica. Costa Rica: Editorial Tecnológica de Costa Rica.
Denyer, P., Montero, W., y Alvarado, G. (2003). Atlas Tectónico de Costa Rica. Costa Rica: Editorial Universidad de Costa Rica.
Goldstein, P., Dodge, D., Firpo, M., y Minner, L. (2003). SAC2000: signal processing and analysis tools for seismologists and engineers. En W. H. K. Lee, H. Kanamori, P. C. Jennings C. Kisslinger (eds.) The IASPEI International Handbook of Earthquake and Engineering Seismology. London: Academic Press.
Herrmann, R. B. (2013) Computer programs in seismology: An evolving tool for instruction and research. Seism. Res. Lettr. 84, 1081-1088. doi:10.1785/0220110096
Kramer S. L. (1996). Geotechnical Earthquake Engineering. New Jersey: Prentice-Hall.
Moya, A. (2009). Inversión de efectos de sitio y factor Q utilizando cocientes espectrales. Estudios Geológicos, 65(1), 67-77.
Quintero, R. y Kissling, E. (2001). An improved P-wave velocity reference model for Costa Rica. Geofísica Internacional, 40(1), 3-19.
Rojas, V. (2013). Relación entre los procesos Volcano-Sedimentarios y el Neotectonismo de la Cuenca Lacustrina de Palmares y San Ramón, Costa Rica. [Tesis de Licenciatura]. Escuela Centroamericana de Geología, Universidad de Costa Rica, Costa Rica.
Schmidt-Díaz, V. (2011). Clasificación de suelos basada en el cálculo de razones espectrales en sitios donde se ubican estaciones acelerográficas de América Central. Casos de El Salvador, Nicaragua y Costa Rica. Rev. Geol. Amér. Central, 44, 9-26.
Schmidt-Díaz, V. (2014a). Ecuaciones predictivas del movimiento del suelo para América Central, con datos de 1972 a 2010. Rev. Geol. Amér. Central, 50, 7-37.
Schmidt-Díaz, V. (2014b). Clasificación de suelos de 15 estaciones acelerográficas, mediante el uso de métodos basados en vibraciones ambientales y del parámetro VS30. Rev. Geol. Amér. Central, 51, 33-67.
Tselentis, G-A. (2011). Assessement of Arias intensity of historical earthquakes using modified Mercalli intensities and artificial neural networks. Nat. Hazards Earth Syst. Sci., 11, 3097-3105.
Wald, D.J., Quitoriano, V., Heaton, T.H., y Kanamori, H. (1999). Relationship between Peak Ground Acceleration, Peak Ground Velocity, and Modified Mercalli Intensity in California. Earthquake Spectra, 15(3), 557-564.
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. y Wobbe, F. (2013). Generic Mapping Tools: Improved version released. EOS Trans. AGU, 94, 409-410.