Ingeniería ISSN Impreso: 1409-2441 ISSN electrónico: 2215-2652

OAI: https://revistas.ucr.ac.cr/index.php/ingenieria/oai
Wastewater quality analysis in Arenal-Tempisque Irrigation District (DRAT)
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

Keywords

Cluster analysis (CU)
discriminant analysis (DA)
irrigation systems,
principal components analysis (PCA)
wastewaters
Análisis de componentes principales (ACP)
análisis de conglomerados (AC)
análisis de discriminante (AD)
aguas de vertido
sistemas de irrigación

How to Cite

Wong Monge, A., & Rojas González, A. M. (2021). Wastewater quality analysis in Arenal-Tempisque Irrigation District (DRAT). Ingeniería, 31(2), 57–79. https://doi.org/10.15517/ri.v31i2.44123

Abstract

The Arenal-Tempisque Irrigation District (DRAT by its acronym in Spanish) is the government agency that regulates the distribution of irrigation water in the agricultural farms in the province of Guanacaste. The DRAT monitors the wastewater quality used in irrigation every six months, through operational reports. However, it isn’t a common practice in irrigation districts to develop studies where the parameters behavior is analyzed over time.

This study developed a multivariate and geostatistical evaluation for the characterization of two microbiological and twenty physical-chemical variables of water quality and related to spatial components such as location, area and distance. Besides, a descriptive statistical analysis was carried out for 12 sampling points evaluated in a period of ten years (2008-2018). A Principal Component Analysis (PCA) was applied, where eigenvector values did not show appreciable differences to visualize the weight of the variables independently. However, the analysis allowed grouping the parameters that explain the behavior within the studied system such as: the concentration of salts (CP1); the active substances to methylene blue and the content of total nitrates (CP2); and the biological dynamics (CP3); that can be related to agricultural practices.

In addition, a hierarchical cluster analysis was carried out for the locations under study and a regression of partial least squares (PLS2) with respect to the geostatistical variables, obtaining that the results of both tests were in agreement with the PCA.

 

https://doi.org/10.15517/ri.v31i2.44123
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

References

FAO, “Buenas perspectivas para los sistemas de riego con energía solar.” http://www.fao.org/news/story/es/item/1116521/icode/ (accessed Sep. 28, 2020).

I. García-Garizábal and J. Causapé, “Influence of irrigation water management on the quantity and quality of irrigation return flows,” J. Hydrol., vol. 385, no. 1–4, pp. 36–43, May 2010, doi: 10.1016/j.jhydrol.2010.02.002.

Á. García, “Criterios modernos para evaluación de la calidad del agua para riego,” 2012. Accessed: Jan. 12, 2021. [Online]. Available: http://ipni.net/publication/ia-lahp.nsf/0/6E4999FFE5F6B8F005257A920059B3B6/$FILE/Art 5.pdf.

P. S. Minhas, T. B. Ramos, A. Ben-Gal, and L. S. Pereira, “Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues,” Agricultural Water Management, vol. 227. Elsevier B.V., p. 105832, Jan. 20, 2020, doi: 10.1016/j.agwat.2019.105832.

O. Heredia, “El agua de Riego: Criterios de Interpretación. Efectos sobre el suelo y la producción,” in Agua subterránea. Exploración y utilización agropecuaria, Argentina: EFA-Editorial Facultad de Agronomía, Universidad de Buenos Aires, 2006, pp. 75–99.

D. L. Suarez, J. D. Wood, and S. M. Lesch, “Effect of SAR on water infiltration under a sequential rain-irrigation management system,” Agric. Water Manag., vol. 86, no. 1–2, pp. 150–164, Nov. 2006, doi: 10.1016/j.agwat.2006.07.010.

M. A. Neira Gutiérrez, “Dureza en aguas de consumo humano y uso industrial, impactos y medidas de mitigación. Estudio de caso: Chile,” Tesis de Pregrado de Ingeniería Civil, Universidad de Chile, Chile, 2006.

J. Causapé, D. Quílez, and R. Aragüés, “Assessment of irrigation and environmental quality at the hydrological basin level: II. Salt and nitrate loads in irrigation return flows,” Agric. Water Manag., vol. 70, no. 3, pp. 211–228, Dec. 2004, doi: 10.1016/j.agwat.2004.06.006.

Y. Pachepsky, D. R. Shelton, J. E. T. McLain, J. Patel, and R. E. Mandrell, “Irrigation Waters as a Source of Pathogenic Microorganisms in Produce: A Review,” in Advances in Agronomy, vol. 113, Academic Press, 2011, pp. 75–141.

G. Kisluk and S. Yaron, “Presence and persistence of salmonella enterica serotype typhimurium in the phyllosphere and rhizosphere of spray-irrigated parsley,” Appl. Environ. Microbiol., vol. 78, no. 11, pp. 4030–4036, Jun. 2012, doi: 10.1128/AEM.00087-12.

O. O. Alegbeleye, I. Singleton, and A. S. Sant’Ana, “Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review,” Food Microbiology, vol. 73. Academic Press, pp. 177–208, Aug. 01, 2018, doi: 10.1016/j.fm.2018.01.003.

M. Uyttendaele et al., “Microbial Hazards in Irrigation Water: Standards, Norms, and Testing to Manage Use of Water in Fresh Produce Primary Production,” Compr. Rev. Food Sci. Food Saf., vol. 14, no. 4, pp. 336–356, Jul. 2015, doi: 10.1111/1541-4337.12133.

C. Leifert, K. Ball, N. Volakakis, and J. M. Cooper, “Control of enteric pathogens in ready-to-eat vegetable crops in organic and ‘low input’ production systems: a HACCP-based approach,” J. Appl. Microbiol., vol. 105, no. 4, pp. 931–950, Oct. 2008, doi: 10.1111/j.1365-2672.2008.03794.x.

K. A. Hamilton, W. Ahmed, E. Rauh, C. Rock, J. McLain, and R. L. Muenich, “Comparing microbial risks from multiple sustainable waste streams applied for agricultural use: Biosolids, manure, and diverted urine,” Current Opinion in Environmental Science and Health, vol. 14. Elsevier B.V., pp. 37–50, Apr. 01, 2020, doi: 10.1016/j.coesh.2020.01.003.

P. K. Jjemba, L. A. Weinrich, W. Cheng, E. Giraldo, and M. W. LeChevallier, “Regrowth of potential opportunistic pathogens and algae in reclaimed-water distribution systems,” Appl. Environ. Microbiol., vol. 76, no. 13, pp. 4169–4178, Jul. 2010, doi: 10.1128/AEM.03147-09.

S. Liu et al., “Characterisation of spatial variability in water quality in the Great Barrier Reef catchments using multivariate statistical analysis,” Mar. Pollut. Bull., vol. 137, pp. 137–151, Dec. 2018, doi: 10.1016/j.marpolbul.2018.10.019.

H. S. Jahin, A. S. Abuzaid, and A. D. Abdellatif, “Using multivariate analysis to develop irrigation water quality index for surface water in Kafr El-Sheikh Governorate, Egypt,” Environ. Technol. Innov., vol. 17, p. 100532, Feb. 2020, doi: 10.1016/j.eti.2019.100532.

N. Magyar, I. G. Hatvani, I. K. Székely, A. Herzig, M. Dinka, and J. Kovács, “Application of multivariate statistical methods in determining spatial changes in water quality in the Austrian part of Neusiedler See,” Ecol. Eng., vol. 55, pp. 82–92, Jun. 2013, doi: 10.1016/j.ecoleng.2013.02.005.

B. Shah et al., “Reckoning of water quality for irrigation and drinking purposes in the konkan geothermal provinces, Maharashtra, India,” Groundw. Sustain. Dev., vol. 9, p. 100247, Oct. 2019, doi: 10.1016/j.gsd.2019.100247.

M. Hajigholizadeh and A. M. Melesse, “Assortment and spatiotemporal analysis of surface water quality using cluster and discriminant analyses,” Catena, vol. 151, pp. 247–258, Apr. 2017, doi: 10.1016/j.catena.2016.12.018.

M. S. Samsudin, A. Azid, S. I. Khalit, M. S. A. Sani, and F. Lananan, “Comparison of prediction model using spatial discriminant analysis for marine water quality index in mangrove estuarine zones,” Mar. Pollut. Bull., vol. 141, pp. 472–481, Apr. 2019, doi: 10.1016/j.marpolbul.2019.02.045.

U. C. R. Escuela de Ingeniería de Biosistemas, “Sistema de Apoyo para la Gestión Inteligente del Recurso Hídrico (SAGIRH).” https://www.sagirh.ucr.ac.cr/drat/ (accessed Sep. 28, 2020).

IMN, “Estaciones Meteorológicas Automáticas de Costa Rica.” https://www.imn.ac.cr/estaciones-automaticas (accessed Feb. 16, 2021).

E. J. Acuña, “Modelo de operación del sistema de canales del Distrito de Riego Arenal-Tempisque,” Tesis de Licenciatura de Escuela de Ingeniería Civil, Universidad de Costa Rica, Costa Rica, 2016.

SENARA, “Dirección de Riego Arenal Tempisque.” http://www.senara.or.cr/drat/index.aspx (accessed Jan. 06, 2021).

Ministerio de Ambiente y Energía, “Reglamento de vertido y reúso de aguas residuales,” San José, Costa Rica, 2007. Accessed: Oct. 03, 2020. [Online]. Available: http://www.digeca.go.cr/sites/default/files/reglamento_vertido_reuso_aguas_residuales_0.pdf.

APHA, AWWA, and WEF, Standard Methods for the Examination of Water and Wastewater, 22 th Edition. Washington, 2012.

S. de la Fuente Fernández, “Análisis componentes principales (ACP),” Facultad de Ciencias Económicas y Empresariales de la Universidad Autónoma de Madrid, España, 2011.

J. A. Di Rienzo, F. Casanoves, M. G. Balzarini, L. González, E. Tablada, and C. W. Robledo, “Infostat - Software estadístico.” Universidad Nacional de Córdoba, Argentina, 2008, Accessed: Jan. 13, 2021. [Online]. Available: https://www.infostat.com.ar/.

S. Lê, J. Josse, and F. Husson, “FactoMineR: An R package for multivariate analysis,” J. Stat. Softw., vol. 25, no. 1, pp. 1–18, Mar. 2008, doi: 10.18637/jss.v025.i01.

S. Dray and A.-B. Dufour, “The ade4 Package: Implementing the duality diagram for e cologists,” J. Stat. Softw., vol. 22, no. 4, pp. 1–20, 2007, doi: 10.18637/jss.v022.i04.

W. N. Venables and B. Ripley, “Modern Applied Statistics with S, 4th ed,” 2002. http://www.stats.ox.ac.uk/pub/MASS4/ (accessed Jan. 12, 2021).

World Health Organization, “Hardness in drinking,” Suiza, 2011. Accessed: Oct. 03, 2020. [Online]. Available: https://www.who.int/water_sanitation_health/dwq/chemicals/hardness.pdf.

A. Kulkarni, “Water quality retrieval from landsat TM imagery,” in Procedia Computer Science, Jan. 2011, vol. 6, pp. 475–480, doi: 10.1016/j.procs.2011.08.088.

J. J. Alvarado and J. F. Aguilar, “Batimetría, salinidad, temperatura y oxígeno disuelto en aguas del Parque Nacional Marino Ballena, Pacífico, Costa Rica,” Rev. Biol. Trop., vol. 57 (1), pp. 19–29, 2009, Accessed: Oct. 03, 2020. [Online]. Available: http://repositoriosiidca.csuca.org/Record/RepoKERWA25756.

US EPA, “Indicators: Dissolved Oxygen,” Aug. 16, 2016. https://www.epa.gov/national-aquatic-resource-surveys/indicators-dissolved-oxygen (accessed Jan. 13, 2021).

A. C. Rencher, “Frontmatter,” in Methods of Multivariate Analysis, New York, NY, USA: John Wiley & Sons, Inc., 2003, pp. i–xxii.

Convenio Ramsar, “Sitio Ramsar: Parque Nacional Palo Verde, Costa Rica,” San José, 1998. Accessed: Oct. 03, 2020. [Online]. Available: https://www.ramsar.org/sites/default/files/documents/library/ram39s_palo_verde_cont._informe_combined.pdf.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2021 Anayansi Wong Monge, Alejandra María Rojas González

Downloads

Download data is not yet available.