Ingeniería ISSN Impreso: 1409-2441 ISSN electrónico: 2215-2652

OAI: https://revistas.ucr.ac.cr/index.php/ingenieria/oai
Use of mixed models in the analysis of homogeneity studies for proficiency testing
PDF (Español (España))
EPUB (Español (España))
HTML (Español (España))

Supplementary Files

Base de datos.csv (Español (España))
Suplemento-Código R.txt (Español (España))

Keywords

drinking water
homogeneity study
linear mixed model
metrology
proficiency testing
uncertainty
agua potable
ensayo de aptitud
estudio de homogeneidad
incertidumbre
metrología
modelo mixto

How to Cite

Molina Castro, G. I., Venegas-Padilla, J., & Calderón-Jiménez, B. (2021). Use of mixed models in the analysis of homogeneity studies for proficiency testing. Ingeniería, 31(1), 4–20. https://doi.org/10.15517/ri.v31i1.44425

Abstract

Proficiency testing has proven to be an extremely powerful tool to evaluate the quality of measurements. This paper evaluates the advantages of using linear mixed models over traditional random-effects models in the analysis of homogeneity studies in proficiency testing and describes their application with a study case of elements measurement in drinking water (proficiency testing DMQ-001-2018 by LCM). Both models were adjusted and evaluated for calcium (Ca) and magnesium (Mg) measurement data using R software. A trend by measurement was evidenced for Mg (p = 0.0005) but not for Ca (p = 0.4265). An analysis of uncertainty components due to lack of homogeneity between units (uhom) and repeatability (ur) showed the similarity in the components obtained for the models in the case without trends (linear mixed model: uhom = 0.4536 mg/L and ur = 0.4643 mg/L, random-effects model: uhom = 0.4705 mg/L and ur = 0.4494 mg/L). However, significant differences were observed in the case with trends (linear mixed model: uhom = 3.0468 ∙ 10-6 mg/L and ur = 0.0842 mg/L, random-effects model: uhom = undefined and ur = 0.2343 mg/L). Great advantages were evidenced for the mixed linear model compared to the traditional model, highlighting the possibility of eliminating mathematical undefinitions in the estimation of uhom and the mitigation of possible overestimations of ur. Finally, an R-code is provided to process data from homogeneity studies based on the fit of a linear mixed model.

 

https://doi.org/10.15517/ri.v31i1.44425
PDF (Español (España))
EPUB (Español (España))
HTML (Español (España))

##plugins.facebook.comentarios##

Downloads

Download data is not yet available.