Abstract
Due to the complexity of wind systems, the need for reliable wind turbines becomes highly relevant, therefore methodologies have been developed to improve their characteristics and performance. The failure modes, effects and criticality analysis method has been used to study the reliability of different power generation systems. This document presents the application of this methodology to a doubly fed induction wind turbine, to perform a qualitative and quantitative evaluation of its failure characteristics. In addition, to take into account economic considerations in the analysis, the approach of the risk-based method is presented to mitigate the limitations presented by the traditional method. As a result, it is determined that the focus should be on the generator, then the electrical system and later on the blades.
References
J. Ribrant y L. M. Bertling, “Survey of failures in wind power systems with focus on Swedish wind power plants during 1997-2005”, IEEE Transactions on Energy Conversion, vol. 22, no. 1, pp. 167-173, marzo, 2007. DOI: 10.1109/TEC.2006.889614
J. M. Gonzáles, L. Amendola y T. Depool, “Modelo de criticidad operacional en generadores de parques eólicos”, presentado en XII Congreso Internacional de Ingeniería de Proyectos, Zaragoza, España, 2008, pp. 2331-2340.
M. N. Scheu, L. Tremps, U. Smolka, A. Kolios y F. Brennan, “A systematic Failure Mode Effects and Criticality Analysis for offshore wind turbine systems towards integrated condition based maintenance strategies”, Ocean Engineering, vol. 176, pp. 118-133, marzo, 2019. DOI: https://doi.org/10.1016/j.oceaneng.2019.02.048
H. Arabian-Hoseynabadi, H. Oraee y P.J. Tavner, “Failure Modes and Effects Analysis (FMEA) for wind turbines”, International Journal of Electrical Power & Energy Systems, vol. 32, no. 7, pp. 817-824, septiembre, 2010. DOI: https://doi.org/10.1016/j.ijepes.2010.01.019.
S. Kahrobaee y S. Asgarpoor. “Risk-based failure mode and effect analysis for wind turbines (rb-fmea)”, presentado en 2011 North American Power Symposium, Boston, Estados Unidos, agosto, 2011, pp. 1–7.
M. Gauravkumar Bharatbhai, “Failure Mode and Effect Analysis of Repower 5M Wind Turbine”, International Journal of Advance Research in Engineering, Science & Technology, vol. 2, no. 5, pp. 1-8, mayo, 2015.
J. Kang, L. Sun, H. Sun y C. Wu, “Risk assessment of floating offshore wind turbine based on correlation-FMEA”, Ocean Engineering, vol. 129, pp. 382-388, enero, 2017. DOI: https://doi.org/10.1016/j.oceaneng.2016.11.048.
N. V. Zubova y A. A. Achitaev, "Application of Neuro-Fuzzy Control Systems for Increasing the Energy Efficiency of Wind Turbines", presentado en XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), Novosibirsk, Rusia, octubre 2-6, 2018, pp. 518-521, DOI: https://doi.org/10.1109/APEIE.2018.8546210.
M. F. Ahmed Fayeem, A. H. Galib y P. Saha, “Micro Wind Turbine as an Alternative Power Source in Bangladesh”, presentado en 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI), Dhaka, Bangladesh, diciembre 24-25, 2019, pp. 1-4, DOI: https://doi.org/10.1109/STI47673.2019.9067980.
Y. Li, Y. Zheng, N. Zhu y F. Zhao, “Wind Turbine Kinetic Energy Accumulation and Release Regulation for Wind Farm Optimization”, presentado en 2019 4th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Hohhot, China, Octubre 24-26, 2019, pp. 231-2314, DOI: https://doi.org/10.1109/ICMCCE48743.2019.00060
S. Pourmohammad y A. Fekih. “Fault tolerant control of wind turbine system – a review”, presentado en 2011 IEEE Green Technologies Conference (IEEE-Green), Baton Rouge, Estados Unidos, abril 14-15, 2011, pp. 1-6, DOI: https://doi.org/10.1109/GREEN.2011.5754880
F. P. García y M. Papaelias, “An overview of wind turbine maintenance management”, en Nom-Destructive Testing and Condition Monitoring Techniques for Renewable Energy Industrial Assets, M. Papaelias, F.P. García and A. Karyotakis, Ed., Oxford, UK: Butterworth-Heinemann, 2020, capítulo 3, pp. 31-47. [en línea]. Disponible en https://doi.org/10.1016/B978-0-08-101094-5.00003-4
K. Rothenhagen y F. W. Fuchs, “Doubly Fed Induction Generator Model-Based Sensor Fault Detection and Control Loop Reconfiguration”, IEEE Transactions on Industrial Electronics, vol. 56, no. 10, pp. 4229-4238, octubre, 2009. DOI: 10.1109/TIE.2009.2013683.
Z. Liu y L. Zhang, “A review of failure modes, condition monitoring and fault diagnostics methods for large-scale wind turbine bearings”, Measurement, vol. 149, enero, 2020. DOI: https://doi.org/10.1016/j.measurement.2019.107002
B. Hahn, et al., “Recommended practices for wind turbine farm data collection and reliability assessment for O&M optimization”, Energy Procedia, vol. 137, octubre, 2017, pp. 358-365. DOI: https://doi.org/10.1016/j.egypro.2017.10.360
A. L. Loría, E. M. Villalobos y C. Piedra, “Modelo de toma de decisiones de mantenimiento basado en la predicción de vida útil para componentes de sistemas eólicos en Costa Rica”, Tecnología en Marcha, vol. 30, no. 3, pp. 129-141, octubre, 2017. DOI: https://doi.org/10.18845/tm.v30i3.3279
J. Helsen, C. Peeters, P. Doro, E. Ververs y P.J. Jordaens, “Wind farm operation and maintenance optimization using big data”, presentado en 2017 IEEE Third International Conference on Big Data Computing Service and Applications (BigDataService), San Francisco, Estados Unidos, abril 6-9, 2017, pp. 179-184, DOI: 10.1109/BigDataService.2017.27
A. Y. Aguilar Romero y L. F. Tandazo Flores. “Análisis de modos de falla, efectos y criticidad del sistema de inyección de un motor de encendido provocado corsa evolution 1.4 L empleando herramientas de aprendizaje y clasificación para la programación de mantenimiento”, Tesis de Bachillerato, Universidad Politécnica Salesiana, Cuenca, Ecuador, 2017.
ICE. “Tarifa T-CB Ventas a ICE distribución y CNFL S.A”, Instituto Costarricense de Electricidad, San José, Costa Rica, p. 8, 2020.
Comments
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2021 Andrey Alberto Solano, Cristian Andrés Ramos Fernández