Ingeniería ISSN Impreso: 1409-2441 ISSN electrónico: 2215-2652

OAI: https://revistas.ucr.ac.cr/index.php/ingenieria/oai
Hyper and multi-spectral comparison of Cynodon nlemfuensis pasture under tropical and grazing conditions with dairy cattle
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

Keywords

NDVI
SAVI
SEBTUBEL 2-MS
spectral signature
spectroradiometry
Espectrorradiometría
firma espectral
NDVI
SAVI
SENTINEL 2-MS

How to Cite

Coto Fonseca, A. F., & Rojas González, A. M. (2021). Hyper and multi-spectral comparison of Cynodon nlemfuensis pasture under tropical and grazing conditions with dairy cattle. Ingeniería, 32(1), 1–18. https://doi.org/10.15517/ri.v32i1.46129

Abstract

Spectral information has been widely applied to study the growth and nutritional conditions of different crops used in the agricultural field; however, there is a research gap regarding forage crops in tropical conditions. This study compared the multi and hyperspectral information of the African star pasture crop (Cynodon nlemfuensis) for dairy cattle feeding using field spectroscopy and satellite information of Sentinel-2. This study determined spectral signature heterogeneity of this crop due to the randomness of the feeding pattern of the cattle and the continuous change of the environmental conditions. Different crop heights in the sampling areas affected the reflectance values, leaf area index and vegetation indices directly. For the NDVI and SAVI, R2 values of 0,725 and 0,446 were achieved for spectral indices between field and satellite data. This research is relevant because it lays the baseline for the use of spectral information regarding the analysis of tropical pastures employed in dairy cattle feeding using remote sensing and a field spectroradiometer.

https://doi.org/10.15517/ri.v32i1.46129
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

References

Z. Chen et al., “Monitoring and Management of Agriculture with Remote Sensing”, en Advances in Land Remote Sensing, Dordrecht: Springer Netherlands, 2008, pp. 397–421.

J. Wang et al., “Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images”, ISPRS J. Photogramm. Remote Sens., vol. 154, pp. 189–201, ago. 2019, doi: 10.1016/j.isprsjprs.2019.06.007.

J. G. P. W. Clevers, L. Kooistra, y M. E. Schaepman, “Estimating canopy water content using hyperspectral remote sensing data”, Int. J. Appl. Earth Obs. Geoinf., vol. 12, núm. 2, pp. 119–125, abr. 2010, doi: 10.1016/j.jag.2010.01.007.

R. G. Allen, A. Kilic, R. Trezza, y J. M. H. Hendrickx, “Satellite‐based ET estimation in agriculture using SEBAL and METRIC”, Hydrol. Process., vol. 25, núm. 26, pp. 4011–4027, 2011, doi: 10.1002/hyp.8408.

R. G. Allen et al., “Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration METRIC—Applications”, J. Irrig. Drain. Eng., vol. 4, núm. 133, pp. 395–406, 2007, doi: 10.1061/(ASCE)0733-9437(2007)133.

L. Mateos y C. Alameda, “Spectral vegetation indices for benchmarking water productivity of irrigated cotton and sugarbeet crops”, Agric. Water Manag., vol. 95, pp. 48–58, 2008, doi: 10.1016/j.agwat.2007.09.001.

S. Sovoe, “Mapping Irrigated Area Fragments for Crop Water Use Assessment Using Handheld Spectroradiometer”, Int. J. Agron., p. 8, 2011, doi: https://doi.org/10.1155/2011/974040.

A. Mokhtari, H. Noory, M. Vazifedoust, y M. Bahrami, “Estimating net irrigation requirement of winter wheat using model- and satellite-based single and basal crop coe ffi cients”, Agric. Water Manag., vol. 208, pp. 95–106, 2018, doi: 10.1016/j.agwat.2018.06.013.

A. Mokhtari et al., “Calculating potential evapotranspiration and single crop coefficient based on energy balance equation using Landsat 8 and Sentinel-2”, ISPRS J. Photogramm. Remote Sens., vol. 154, pp. 231–245, 2019, doi: 10.1016/j.isprsjprs.2019.06.011.

M. Drusch et al., “Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services”, Remote Sens. Environ., vol. 120, pp. 25–36, may 2012, doi: 10.1016/j.rse.2011.11.026.

T. R. Loveland y J. R. Irons, “Landsat 8: The plans, the reality, and the legacy”, Remote Sens. Environ., vol. 185, pp. 1–6, nov. 2016, doi: 10.1016/j.rse.2016.07.033.

Q. Xie et al., “Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery”, Int. J. Appl. Earth Obs. Geoinf., vol. 80, pp. 187–195, ago. 2019, doi: 10.1016/j.jag.2019.04.019.

M. Guerini Filho, T. M. Kuplich, y F. L. F. De Quadros, “Estimating natural grassland biomass by vegetation indices using Sentinel 2 remote sensing data”, Int. J. Remote Sens., vol. 41, núm. 8, pp. 2861–2876, abr. 2020, doi: 10.1080/01431161.2019.1697004.

E. Ben-dor et al., “Remote Sensing of Environment Using Imaging Spectroscopy to study soil properties”, Remote Sens. Environ., vol. 113, pp. S38–S55, 2009, doi: 10.1016/j.rse.2008.09.019.

T. Jarmer, M. Vohland, H. Lilienthal, y E. Schnug, “Estimation of Some Chemical Properties of an Agricultural Soil by Spectroradiometric Measurements”, Pedosph. An Int. J., vol. 18, núm. 2, pp. 163–170, 2008, doi: https://doi.org/10.1016/S1002-0160(08)60004-1.

I. Melendez-Pastor, J. Navarro-pedreño, I. Gómez, y M. Koch, “Identifying optimal spectral bands to assess soil properties with VNIR radiometry in semi-arid soils”, Geoderma, vol. 147, pp. 126–132, 2008, doi: 10.1016/j.geoderma.2008.08.004.

R. E. N. Hong-yan, Z. Da-fang, A. N. Singh, P. A. N. Jian-jun, y Q. I. U. Dong-sheng, “Estimation of As and Cu Contamination in Agricultural Soils Around a Mining Area by Reflectance Spectroscopy : A Case Study”, Pedosph. An Int. J., vol. 19, núm. 6, pp. 719–726, 2009, doi: 10.1016/S1002-0160(09)60167-3.

N. Bao, L. Wu, K. Yang, y W. Zhou, “Assessing soil organic matter of reclaimed soil from a large surface coal mine using a field spectroradiometer in laboratory”, Geoderma, núm. 288, pp. 47–55, 2017, doi: https://doi.org/10.1016/j.geoderma.2016.10.033.

S. N. Kulkarni y R. R. Deshmukh, “Monitoring Carbon , Nitrogen , Phosphor and Water Contents of Agricultural Soil by Reflectance Spectroscopy using ASD Fieldspec Spectroradiometer”, Int. J. Eng. Sci. Comput., vol. 6, núm. 11, pp. 3429–3433, 2016.

I. F. S. Gazala et al., “Spectral reflectance pattern in soybean for assessing yellow mosaic disease”, Indian J. Virol., vol. 24, núm. 2, pp. 242–249, sep. 2013, doi: 10.1007/s13337-013-0161-0.

M. L. Gnyp et al., “Hyperspectral Analysis of Rice Phenological Stages on Northeast China”, ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci., vol. I–7, pp. 77–82, jul. 2012, doi: 10.5194/isprsannals-I-7-77-2012.

R. R. Pullanagari, I. J. Yule, M. P. Tuohy, M. J. Hedley, R. A. Dynes, y W. M. King, “In-field hyperspectral proximal sensing for estimating quality parameters of mixed pasture”, Precis. Agric., vol. 13, núm. 3, pp. 351–369, jun. 2012, doi: 10.1007/s11119-011-9251-4.

J. Elizondo Salazar, “Pasto Estrella Africana: Características Nutricionales y Aspectos de Manejo”, Vent. Leche., vol. 3, núm. 10, pp. 26–27, 2008.

CIA, IICA, INTA, y Asociacion Costarricense de la Ciencia del Suelo, “Geoportal de Suelos de Costa Rica”, Suelos.cr. http://www.suelos.cr (accesado en Ene. 25, 2020).

R. McCoy M, “Sampling in the Field”, en Field Methods in Remote Sensing, New York, NY: The Guilford Press, 2005, pp. 12–40.

A. F. . Goetz, “Making Accurate Field Spectral Reflectance Measurements”, Malvern Panalytical. https://www.materials-talks.com/wp-content/uploads/2018/01/Making-Accurate-Field-Spectral-Reflectance-Measurements-LR.pdf (accesado en Mar. 06, 2021).

I. Herrmann, A. Pimstein, A. Karnieli, Y. Cohen, V. Alchanatis, y D. J. Bonfil, “LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands”, Remote Sens. Environ., vol. 115, núm. 8, pp. 2141–2151, ago. 2011, doi: 10.1016/j.rse.2011.04.018.

W. William et al., “Searching for the Optimal Sampling Desing for Measuring LAI in a Upland Forest”, CEUR Workshop Proceedings. http://ceur-ws.org/Vol-1328/GSR2_Woodgate.pdf (accesado en Sep. 14, 2019).

ASD Inc, “ViewSpec Pro Software Install”, Malvern Panalytical. https://www.malvernpanalytical.com/en/support/product-support/software/ViewSpecProSoftwareInstall (accesado en Oct. 01, 2019).

ESA, “Sentinel-2 Spectral Response Functions (S2-SRF)”, Sentinel 2 Document Library. https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses (accesado en Nov. 01, 2019).

QGIS Development Team, “QGIS A Free and Open Source Geographic Information System”, QGIS.org. http://qgis.org (accesado en Sep. 01, 2019).

J. . Rouse, R. . Haas, J. . Schell, y D. . Deering, “Monitoring vegetation systems in the great plains with ERTS”, NTRS - NASA Technical Reports Server. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740022614.pdf (accesado en Ene. 25, 2020).

R. G. Allen, M. Tasumi, y R. Trezza, “Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model”, J. Irrig. Drain. Eng., vol. 4, núm. 133, pp. 380–394, 2007.

M. Tasumi, “Progress in operational estimation of regional evapotranspiration using satellite imagery”, University of Idaho, 2003.

Ø. Hammer, D. A. . Harper, y R. P.D, “PAST: Paleontological statistics software package for education and data analysis”, Palaeontologia Electronica. https://palaeo-electronica.org/2001_1/past/past.pdf (accesado en Mar. 01, 2020).

A. K. Mahlein, U. Steiner, H. W. Dehne, y E. C. Oerke, “Spectral signatures of sugar beet leaves for the detection and differentiation of diseases”, Precis. Agric., vol. 11, núm. 4, pp. 413–431, 2010, doi: 10.1007/s11119-010-9180-7.

K. Yu et al., “Hyperspectral Canopy Sensing of Wheat Septoria Tritici Blotch Disease”, Front. Plant Sci., vol. 9, ago. 2018, doi: 10.3389/fpls.2018.01195.

H. Croft, J. Arabian, J. M. Chen, J. Shang, y J. Liu, “Mapping within-field leaf chlorophyll content in agricultural crops for nitrogen management using Landsat-8 imagery”, Precis. Agric., vol. 21, núm. 4, pp. 856–880, ago. 2020, doi: 10.1007/s11119-019-09698-y.

ASD, Analytical Spectral Devices, Inc. (ASD) Technical Guide. CO, USA, 1999.

T. . Pande, I. Valentine, K. Betteridge, A. Mackay, y D. Horne, “Pasture damage and regrowth from cattle treading”, Proc. New Zeal. Grassl. Assoc., núm. 62, pp. 155–160, ene. 2000, doi: 10.33584/jnzg.2000.62.2366.

R. WingChing-Jones, G. Cabalceta-Aguilar, y A. Alvarado-Hernández, “Impacto del pastoreo con ganado Holstein y Jersey sobre la densidad aparente de un andisol”, Agron. Mesoam., vol. 20, núm. 2, p. 371, feb. 2009, doi: 10.15517/am.v20i2.4953.

M. Kganyago, P. Mhangara, T. Alexandridis, G. Laneve, G. Ovakoglou, y N. Mashiyi, “Validation of sentinel-2 leaf area index (LAI) product derived from SNAP toolbox and its comparison with global LAI products in an African semi-arid agricultural landscape”, Remote Sens. Lett., vol. 11, núm. 10, pp. 883–892, oct. 2020, doi: 10.1080/2150704X.2020.1767823.

M. Rossi, G. Niedrist, S. Asam, G. Tonon, E. Tomelleri, y M. Zebisch, “A Comparison of the Signal from Diverse Optical Sensors for Monitoring Alpine Grassland Dynamics”, Remote Sens., vol. 11, núm. 3, p. 296, feb. 2019, doi: 10.3390/rs11030296.

R. Martínez-Barbáchano y G. Solís-Miranda, “Caracterización Espectral y Detección de Flecha Seca en Palma Africana en Puntarenas, Costa Rica”, Rev. Geográfica América Cent., vol. 2, núm. 61, p. 329, jul. 2018, doi: 10.15359/rgac.61-2.13.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2021 Alberto Francisco Coto Fonseca, Alejandra María Rojas González

Downloads

Download data is not yet available.