Ingeniería ISSN Impreso: 1409-2441 ISSN electrónico: 2215-2652

OAI: https://revistas.ucr.ac.cr/index.php/ingenieria/oai
Evaluation of the validity of correction factors to estimate the standard uncertainty of a triangular distribution with a 95 % coverage interval
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

Keywords

Greenhouse gases
National Program for Carbon Neutrality
Probability distribution
Simulation
Triangular distribution
Uncertainty
Distribución de probabilidad
Distribución triangular
Gases de efecto invernadero
Incertidumbre
Programa País de Carbono Neutralidad
Simulación

How to Cite

Molina-Castro, G. (2022). Evaluation of the validity of correction factors to estimate the standard uncertainty of a triangular distribution with a 95 % coverage interval. Ingeniería, 32(2), 14–28. https://doi.org/10.15517/ri.v32i2.49699

Abstract

Recently, measurement uncertainty estimation has become a topic of great interest for the reporting of greenhouse gas (GHG) inventories in Costa Rica. In this context, a national methodological guide published by the National Carbon Neutrality Program (PPCN, for its Spanish acronym) has emerged as the basis for the local development of this issue. However, a few aspects of its content lack a clear explanation to justify its implementation. The present study assesses the validity of the use of correction factors, proposed by this guide, that enlarges the standard uncertainty estimated from a triangular distribution, in the presence of a 95 % coverage interval. To achieve this, 3124 triangular distribution scenarios were simulated. Two standard uncertainties were estimated for each scenario: one considering that the simulated limits delimit a 100 % coverage interval (u100) and another considering a 95 % coverage interval (u95), with two possible interpretations about the location of the interval being considered for the latter. The correction factors FC were estimated for four different groups of scenarios as the slopes between u95 and u100 with a least-squares regression using R statistical software. Results between 1.23 and 1.29 were obtained, with a global value of 1.25. These values ​​are consistent with those found in the national methodological guide, thus verifying their validity and applicability. Finally, the use of the correction factor of 1.25 is suggested as a practical approximation for all the evaluated scenarios, which is expected to facilitate its implementation by users.

https://doi.org/10.15517/ri.v32i2.49699
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

References

Greenhouse gases — Part 1: Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals. ISO Standard 14064-1, 2018.

Norma para demostrar la Carbono Neutralidad - Requisitos. Norma INTE B5, 2020.

DCC y PMR, “Programa País de Carbono Neutralidad: Categoría Organizacional (Programa País de Carbono Neutralidad PPCN 2.0)”. Dirección de Cambio Climático. https://cambioclimatico.go.cr/wp-content/uploads/2020/04/1-PPCN_Organizacional.pdf (accesado en 26 Nov., 2021).

BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP y OIML, “VIM – Vocabulario Internacional de Metrología. Conceptos fundamentales y generales, y términos asociados (VIM 2008 con pequeñas correcciones)”. Centro Español de Metrología. https://www.cem.es/sites/default/files/vim-cem-2012web.pdf (accesado en 24 Nov., 2021).

BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP y OIML, “Evaluación de datos de medición - Guía para la expresión de la incertidumbre de medida (JCGM 100 - GUM 1995 con ligeras correcciones)”. Centro Español de Metrología. http://www.cem.es/sites/default/files/gum20digital1202010.pdf (accesado en 24 Nov., 2021).

BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP y OIML, “Evaluación de datos de medición – Suplemento 1 de la Guía para la expresión de la incertidumbre de medida – Propagación de incertidumbres aplicando el método de Monte Carlo (JCGM 101)”. Centro Español de Metrología. https://www.cem.es/sites/default/files/suplemento20120de20gum_0.pdf (accesado en 24 Nov., 2021).

IPCC, “Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories – Quantifying Uncertainties in Practice”. IPCC Library. https://www.ipcc.ch/publication/good-practice-guidance-and-uncertainty-management-in-national-greenhouse-gas-inventories/ (accesado en 30 Nov., 2021).

IPCC, “2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 1: General Guidance and Reporting – Uncertainties”. IPCC Task Force on National Greenhouse Gas Inventories. https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol1.html (accesado en 30 Nov., 2021).

DCC, PMR y LCM, “Guía metodológica para la estimación y análisis de la incertidumbre de emisiones y remociones de gases de efecto invernadero (GEI) – Programa País de Carbono Neutralidad 2.0”. Dirección de Cambio Climático. https://cambioclimatico.go.cr/wp-content/uploads/2019/11/PPCN-GuiaIncertidumbre.pdf (accesado en 26 Nov., 2021).

IMN, “Factores de emisión de gases de efecto invernadero - 11 edición”. Instituto Meteorológico Nacional. Programa de Cambio Climático. http://cglobal.imn.ac.cr/index.php/publications/factores-de-emision-gei-decima-edicion-2021/ (accesado en 26 Nov., 2021).

R Core Team, “R: A Language and Environment for Statistical Computing”. The R Project for Statistical Computing. https://www.R-project.org/ (accesado en 06 Ene., 2022).

N. W. Petty y S. Dye, “Notes on triangular distributions”. Statistics Learning Centre. https://learnandteachstatistics.files.wordpress.com/2013/07/notes-on-triangle-distributions.pdf. (accesado en 07 Dic., 2021).

G. Molina-Castro y B. Calderón-Jiménez, “Evaluating asymmetric approaches to the estimation of standard uncertainties for emission factors in the fuel sector of Costa Rica,” Frontiers in Environmental Science, vol. 9, art. 662052, 2021. doi: 10.3389/fenvs.2021.662052.

J. E. Dennis y R. B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations. Philadelphia, USA: SIAM, 1996.

B. Hasselman, “nleqslv: Solve systems of nonlinear equations”. The Comprehensive R Archive Network (CRAN Project). https://cran.r-project.org/web/packages/nleqslv/index.html (accesado en 07 Ene., 2022).

M. A. Jenkins y J. F. Traub, “Algorithm 419: zeros of a complex polynomial,” Communications of the ACM, vol. 15, no. 2, pp. 97-99, 1972, doi: 10.1145/361254.361262.

S. N. Gil, “Bootstrap en poblaciones finitas”, Tesis para optar por el grado de Máster en Estadística Aplicada, Depart. de Estad. e Invest. Oper., Univer. de Granada, España, 2014. [En línea]. Obtenido de https://masteres.ugr.es/moea/pages/tfm1314/tfm_samuel_gil_abreu/.

J. Ramírez-Montoya, I. Osuna-Vergara, J. Rojas-Mora y S. Guerrero-Gómez, “Bootstrap and Jacknnife resampling in reliability: case exponential and Weibull,” Revista Facultad De Ingeniería, vol. 25, no. 41, pp. 55-62, 2016, doi: 10.19053/01211129.4137.

H. Wickham, R. François, L. Henry y K. Müller, “dplyr: A Grammar of Data Manipulation”. The Comprehensive R Archive Network (CRAN Project). https://cran.r-project.org/web/packages/dplyr/index.html (accesado en 06 Ene., 2022).

Comments

Downloads

Download data is not yet available.