Ingeniería ISSN Impreso: 1409-2441 ISSN electrónico: 2215-2652

OAI: https://revistas.ucr.ac.cr/index.php/ingenieria/oai
GNSS Processing in the CR-SIRGAS geodetic frame: influence of observation and reference epochs
PDF (Español (España))
HTLM (Español (España))
EPUB (Español (España))

Keywords

CR-SIRGAS
observation epoch
reference epoch
reduction factor
mathematical models
CR-SIRGAS
época de observación
época de referencia
factor de reducción
modelos matemáticos

How to Cite

Moya Zamora, J. (2022). GNSS Processing in the CR-SIRGAS geodetic frame: influence of observation and reference epochs. Ingeniería, 32(2), 48–85. https://doi.org/10.15517/ri.v32i2.50181

Abstract

The satellite observations derived from the GNSS constellations are fully correlated with the moment in which the measurements are made, however, users can transfer them to different epochs as long as the necessary parameters are available. The quality of the GNSS measurements will in principle be affected by taking them to a different epoch than the original. In the case of the national geodetic frame of Costa Rica CR-SIRGAS, its current reference epoch is t0 = 2019,24 [1] but the georeferencing of spatial information for cadastral purposes must be in the reference time tk = 2014,59 [2]. A fixed adjustment process was carried out at the epoch ti = 2021.53 using as observations the baselines of each new point to a maximum of four CR-SIRGAS stations with their respective final weekly coordinates. This adjustment was then repeated using the same, but as reference coordinates the official reference epoch t0, implying a marked decrease in the original weight of the observations by a factor of 1.5 to 9.5. In addition, it was possible to quantify the discrepancies in the coordinates, accuracies and observations adjusted directly at this time t0. Finally, the official transformation parameters given by [1] were applied to take the set of coordinates from epoch t0 to epoch tk.

https://doi.org/10.15517/ri.v32i2.50181
PDF (Español (España))
HTLM (Español (España))
EPUB (Español (España))

References

Decreto Ejecutivo Nº 40962-MJP. Actualizacion del Sistema Geodésico de Referencia Horizontal Oficial para Costa Rica. La Gaceta Nº 66 del 17 de abril de 2018. Disponible en: http://www.pgrweb.go.cr/scij/Busqueda/Normativa/Normas/nrm_texto_completo.aspx?param1=NRTC&nValor1=1&nValor2=86299&nValor3=111886&strTipM=TC

La Gaceta Nº 132. Directriz DRI-003-2021. Sobre el formato y enlace al Marco Geodésico para la Georreferenciación de levantamientos con fines catastrales. 02 de julio de 2021. Disponible en: https://www.imprentanacional.go.cr/gaceta/?date=09/07/2021

Directriz Nº DIG-001-2020. Parámetros de transformación para pasar de las épocas 2014,59 a la 2019,24 en el ITRF14 correspondiente con CR-SIRGAS. La Gaceta Nº 223 del 04 de setiembre de 2020. Disponible en: http://www.pgrweb.go.cr/scij/Busqueda/Normativa/Normas/nrm_texto_completo.aspx?param1=NRTC&nValor1=1&nValor2=92346&nValor3=122231&strTipM=TC

J. Moya Zamora, S. Bastos Gutiérrez, y A. Álvarez Calderón, «Parámetros de transformación entre los marcos geodésicos CR05 y CR-SIRGAS contemplando diferentes soluciones ITRF», Rev. Ing., vol. 31, n.o 1, pp. 21-50, ene. 2021, doi: 10.15517/ri.v31i1.43854.

R. Langley, P. J. Teunissen y O. Montenbruck «Introduction to GNSS, en Teunissen», P. J. G. y Montenbruck, O. (eds) Springer Handbook of Global Navigation Satellite System, pp. 3-24. ISBN: 978-3-319-42926-7 e-ISBN: 978-3-319-42928-1. https://doi.org/10.1007/978-3-319-42928-1

Leick, A. (2015). GPS Satellite Surveying. 4 edición, John Wiley & Sons, Inc, New Jersey, Estados Unidos, pp. 836. ISBN 978-1-118-67557-1

Xu, G. y J. Xu (2016) GPS Theory, Algorithms and Applications. Tercera edición. ISBN 978-3-662-50365-2. Springer Berlin Heidelberg New York, pp. 508 https://doi.org/10.1007/978-3-662-50367-6

B. Hofmann-Wellenhof, H. Lichtenegger and J. Collins (2001). GPS Theory and Practice. Quinta edición. Springer Wien New York, pp. 382

X. Luo, GPS Stochastic Modelling. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

A. El-Rabbany, Introduction to GPS The Global Positionning System. 2002.

UNAVCO (2021). Geodetic Infrastructure in the Northern Costa Rica Subduction Zone Disponible en: https://www.unavco.org/highlights/2020/costarica2019.html

Wessel, P., J. F. Luis, L. Uieda, R. Scharroo, F. Wobbe, W. H. F. Smith and D. Tian (2019) The Generic Mapping Tools Version 6, Geochesmtry, Geophysics and Geosystems, 20, pp 5556-5564, https://doi.org/10.1029/2019GC008515

Farr, T. G., et al. (2007), The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004, doi:10.1029/2005RG000183.

Department of Transportation and Main Roads (2021). Trimble Business Center v5.40 – Processing and Adjusting GNSS Survey Control Networks, pp 142, https://www.tmr.qld.gov.au

M. Azhari, Z. Altamimi, G. Azman, M. Kadir, W.J.F Simons, R. Sohaime, M.Y. Yunus, M.J. Irwan, C.A. Asyran, N. Soeb, A. Fahmi and A. Saiful, «Semi-kinematic geodetic reference frame base on the ITRF2014 for Malaysia». J. Geod. Sci. 10 : 90-190, doi:10.1515/jogs-2020-0108

H. Ronen and G. Even-Tzur «Kinematic Datum Based on the ITRF as a Precise, Accurate, and lasting TRF for Israel» 2017, Journal of Surveying Engineering. Vol. 143, Issue 4 doi: 10.1061/(ASCE)SU.1943-5428.0000228

N. K. Pavlis, S. A. Holmes, S. C. Kenyon, y J. K. Factor, «The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)», J. Geophys. Res. Solid Earth, vol. 117, n.o B4, p. n/a-n/a, abr. 2012, doi: 10.1029/2011JB008916.

L. Sánchez y H. Drewes, «Geodetic Monitoring of the Variable Surface Deformation in Latin America», 2020, doi: 10.1007/1345_2020_91.

Comments

Downloads

Download data is not yet available.