Ingeniería ISSN Impreso: 1409-2441 ISSN electrónico: 2215-2652

OAI: https://revistas.ucr.ac.cr/index.php/ingenieria/oai
Techono-Economical analysis of a pv system with energy storage for clients with a residential tarif in Costa Rica
PDF (Español (España))
EPUB (Español (España))
HTML (Español (España))

Keywords

Energía solar
almacenamiento de energía
tarifa residencial
analisis tecno-económico
sector residencial
análisis de factibilidad
sistemas fotovoltaicos
Energy storage
feasibility analysis
residential sector
photovoltaic systems
solar energy
techni-economic analysis

How to Cite

Vega Garita, V., Blanco-Vega, M. I. ., & Pérez, A. . (2023). Techono-Economical analysis of a pv system with energy storage for clients with a residential tarif in Costa Rica. Ingeniería, 33(2), 17–41. https://doi.org/10.15517/ri.v33i2.51818

Abstract

Solar energy is a type of renewable energy that, due to its nature, it is intrinsically influenced by the variability of meteorological and geographical conditions of the site. To tackle variability, storage technologies such as batteries can be used, they enable the integration of these energies into the electricity network and supply of loads at times of low generation. In this paper, a technical and economic analysis of a photovoltaic (PV) system including energy storage is carried out. Therefore, a model of a photovoltaic system with and without energy storage was developed in order to compare the technical and economic metrics for each case in the context of a residential system, while following a flat tariff. Based on the analysis, the results indicate that from the economic point of view, it is more profitable to install systems operating only with PV modules. On the other hand, the systems with pv system and storage allows a better use of the photovoltaic energy as can be seen from the metrics of self-consumption and autarky. Thus, this article contributes to the analysis of photovoltaic systems with energy storage through batteries, a relatively new technology in the country, collaborating with the generation of knowledge of systems that are expected to substantially change the electrical system.

https://doi.org/10.15517/ri.v33i2.51818
PDF (Español (España))
EPUB (Español (España))
HTML (Español (España))

References

MINAE, Estadísticas de Generación Distribuida – Dirección de Energía. https://energia.minae.go.cr/?page_id=2068. (Accesado en Jul. 10 de 2022).

V.Ramasamy, D. Feldman, J. Desai y R. Margolis, U.S. Solar Photovoltaic System and Energy Storage Cost Benchmarks: Q1 2021, www.nrel.gov/publications. (Accesado en 2021).

N. Narayan, V. Vega-Garita, Z. Qin, J. Popovic-Gerber, P. Bauer y M. Zeman, “The long Ingeniería 33(2): 17-41, Julio-Diciembre, 2023. ISSN: 2215-2652. San José, 41 road to universal electrification: A critical look at present pathways and challenges”, Energies, vol. 13, 3 2020, 1ssN: 19961073. DOI: 10.3390/en13030508.

S. Poddar, J. P. Evans, M. Kay, A. Prasad y S. Bremner, “Estimation of future changes in photovoltaic potential in Australia due to climate change”, Environmental Research Letters, vol. 16, 11 nov. de 2021, ISSN: 17489326. Dor: 10.1088/1748-9326/ac2a64.

V. Vega-Garita, M. F. Sofyan, N. Narayan, L. Ramirez-Elizondo y P. Bauer, “Energy management system for the photovoltaic battery integrated module”, Energies, vol. 11, 12 dic. de 2018, ISSN: 19961073. Dor: 10.3390/en11123371.

W. Marañda, “Diagrams for energy management in renewable energy systems”, en 2017 MIXDES-24th International Conference”Mixed Design of Integrated Circuits and Systems, IEEE, 2017, págs. 475-478.

G. Barchi, G. Miori, D. Moser y S. Papantoniou, “A small-scale prototype for the optimization of PV generation and battery storage through the use of a building energy management system”, en 2018 IEEE International Conference on Environment and Electrical Engineering

and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/IESCPS Europe), IEEE, 2018, págs. 1-5.

L. Mauler, F. Duffner, W. G. Zeier y J. Leker, “Battery cost forecasting: a review of methods and results with an outlook to 2050”, Energy & Environmental Science, vol. 14, n. 9, 2021. DOI: 10.1039/d1ee01530c.

V. Vega-Garita, A. Hanif, N. Narayan, L. Ramirez-Elizondo y P. Bauer, “Selecting a suitable battery technology for the photovoltaic battery integrated module”, Journal of Power Sources, vol. 438, 2019, Issn: 03787753. Dor: 10.1016/j.jpowsour .2019.227011.

L. Millet, A. Berrueta, M. Bruch, N. Reiners y M. Vetter, “Extensive analysis of photovoltaic battery self-consumption: Evaluation through an innovative district case-study”, Applied Physics Reviews, vol. 6, n.° 2, pág. 021 301, 2019. DOr: 10.1063/1.5049665.

L. Learning, The Payback Method. Lumen, 2021.

K. Jäger, O. Isabella, A. H. Smets, R. Van Swaaij y M. Zeman, Solar Energy: The physics and engineering of photovoltaic conversion, technologies and systems. UTT Cambridge, 2016.

C.S. INC, Canadian_Solar-Datasheet- HiKu_CS3L-MS-(1000V 65 1500V)_EN, CanadianSolar.com. (Accesado en Jun. 2022).

J. A. Duffie y W. A. Beckman, Wiley: Solar Engineering of Thermal Processes, 4th Edition - John A. Duffie, William A. Beckman. 2013, pág. 936, ISBN: 9780470873663. dirección: http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470873663. html.

I. C. de Electridad, “Plan de expansión de la generación eléctrica 2018 - 2034”, 2019. dirección: WWW. grupoice.com.

C. N. de Fuerza y Luz (CNFL), “Servicios Eléctricos para Inmuebles-Tarifas Vigentes”, 2021. dirección: https://www.cnfl.go.cr/servicios/electricos/inmuebles/tramites/tarifas

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2023 Víctor Vega Garita, María Isabel Blanco-Alfaro, Aramis Pérez Mora

Downloads

Download data is not yet available.