Ingeniería ISSN Impreso: 1409-2441 ISSN electrónico: 2215-2652

OAI: https://revistas.ucr.ac.cr/index.php/ingenieria/oai
Techno-Economic Analysis of Biogas Production from Pineapple Leaves Juice and Chicken Manure in Anaerobic Codigestion
PDF
HTML
EPUB

Keywords

Anaerobic codigestion
biogas
chicken manure
pineapple leaves
feasibility
Biogás
Codigestión anaeróbica
gallinaza
rastrojo de piña
prefactibilidad económica

How to Cite

Da Luz Castro, J., Rojas Sossa, J., & Bustamante Román, M. (2023). Techno-Economic Analysis of Biogas Production from Pineapple Leaves Juice and Chicken Manure in Anaerobic Codigestion. Ingeniería, 34(1), 23–32. https://doi.org/10.15517/ri.v34i1.55355

Abstract

Pineapple, Ananas comosus, in the one of the most important crops in Costa Rica, producing a prominent 1,7 % of the national GDP; however, current methodologies to treat pineapple leaves can cause potential public health problems due to proliferation of flies. The objective of this work was to use pineapple leaves juice to evaluate the production of biogas in combination with chicken manure as substrates. Biochemical methane potential assays were carried out using different proportions of juice and chicken manure (70/30, 80/20 and 90/10), as well as individual assays for each substrate. Results show that higher amounts of biogas were produced in the systems with 70/30 and 80/20 proportions. In addition, a capital investment estimation was carried out to evaluate the techno-economic feasibility with the Peters and Timmerhaus methodology. The techno-economic analysis gives a payback time of 2,3 years which makes the project highly profitable.

https://doi.org/10.15517/ri.v34i1.55355
PDF
HTML
EPUB

References

REFERENCES

N. Wali, “Pineapple (Ananas comosus),” in Nonvitamin and Nonmineral Nutritional Supplements, Elsevier, 2019, pp. 367–373. doi: 10.1016/B978-0-12-812491-8.00050-3.

FAOSTAT, “Statistical data for food and agriculture,” United Nations Agency for Food and Agriculture. fao.org/faostat/es/#data/QCL (accessed Nov. 11, 2022).

L. A. González Alfaro, Manual técnico para el manejo de rastrojos en el cultivo de piña. San José, Costa Rica: Ministerio de Agricultura y Ganadería, 2012.

O. H. Ahmed, M. H. A. Husni, A. R. Anuar, and M. M. Hanafi, “Economic Viability of Pineapple Residues Recycling,” J. Sustain. Agric., vol. 21, no. 4, pp. 129–137, Apr. 2003, doi: 10.1300/J064v21n04_07.

O. H. Ahmed, M. H. A. Husni, A. R. Anuar, and M. M. Hanafi, “Effect of Residue Management Practices on Yield and Economic Viability of Malaysian Pineapple Production,” J. Sustain. Agric., vol. 20, no. 4, pp. 83–93, Jul. 2002, doi: 10.1300/J064v20n04_06.

M. A. Montiel Segura, “Uso de agroquímicos en la producción intensiva de piña en Costa Rica,” Rev. Pensam. Actual, vol. 15, no. 25, p. 13, 2015.

A. Chen et al., “Production of renewable fuel and value-added bioproducts using pineapple leaves in Costa Rica,” Biomass Bioenergy, vol. 141, p. 105675, Oct. 2020, doi: 10.1016/j.biombioe.2020.105675.

M. Córdoba-Pérez and M. E. Molina-Córdoba, “Determinación del efecto de la concentración de la celulasa, celobiasa y de NaOH en la hidrólisis para la producción de etanol a partir del rastrojo de la piña,” Rev Ing., vol. 24, no. 2, p. 18, 2014, doi: 10.15517/ring.v24i2.11767.

S. Imman et al., “Optimization of sugar recovery from pineapple leaves by acid-catalyzed liquid hot water pretreatment for bioethanol p→roduction,” Energy Rep., vol. 7, pp. 6945–6954, Nov. 2021, doi: 10.1016/j.egyr.2021.10.076.

N. I. Nashiruddin, A. F. Mansor, R. A. Rahman, R. Md. Ilias, and H. W. Yussof, “Process parameter optimization of pretreated pineapple leaves fiber for enhancement of sugar recovery,” Ind. Crops Prod., vol. 152, p. 112514, Sep. 2020, doi: 10.1016/j.indcrop.2020.112514.

R. Saini, C.-W. Chen, A. K. Patel, J. K. Saini, C.-D. Dong, and R. R. Singhania, “Valorization of Pineapple Leaves Waste for the Production of Bioethanol,” Bioengineering, vol. 9, no. 10, p. 557, Oct. 2022, doi: 10.3390/bioengineering9100557.

M. Broda, D. J. Yelle, and K. Serwańska, “Bioethanol Production from Lignocellulosic Biomass—Challenges and Solutions,” Molecules, vol. 27, no. 24, p. 8717, Dec. 2022, doi: 10.3390/molecules27248717.

K. Vasić, Ž. Knez, and M. Leitgeb, “Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources,” Molecules, vol. 26, no. 3, p. 753, Feb. 2021, doi: 10.3390/molecules26030753.

J. L. Araya Navarro, “Producción de un biocompuesto a base de almidón termoplástico de yuca amarga (Manihot Esculenta Crantz) y nanocelulosa obtenida de rastrojo de piña (Ananas Comosus),” B.S. thesis, Univ. Nac. de Costa Rica, Heredia, Costa Rica, 2021. [Online]. Available: https://repositorio.una.ac.cr/handle/11056/20527

A. Saha, S. Kumar, D. Zindani, and S. Bhowmik, “Micro-mechanical analysis of the pineapple-reinforced polymeric composite by the inclusion of pineapple leaf particulates,” Proc. Inst. Mech. Eng. Part J. Mater. Des. Appl., vol. 235, no. 5, pp. 1112–1127, May 2021, doi: 10.1177/1464420721990851.

J. Iewkittayakorn, P. Khunthongkaew, Y. Wongnoipla, K. Kaewtatip, P. Suybangdum, and A. Sopajarn, “Biodegradable plates made of pineapple leaf pulp with biocoatings to improve water resistance,” J. Mater. Res. Technol., vol. 9, no. 3, pp. 5056–5066, May 2020, doi: 10.1016/j.jmrt.2020.03.023.

E. Solís Nicolas, J. R. Vega Baudrit, E. Rodríguez Rojas, and L. C. Mesenguer Quesada, “Estudio del efecto de la adición de nanocelulosa obtenida del desecho del rastrojo de piña en mezclas para materiales de construcción,” Rev. Iberoam. Polímeros, vol. 20, no. 1, pp. 21–43, 2019.

C. T. X. Nguyen, K. H. Bui, B. Y. Truong, N. H. N. Do, and P. T. K. Le, “Nanocellulose from Pineapple Leaf and Its Applications towards High-value Engineering Materials,” Chem. Eng. Trans., vol. 89, pp. 19–24, Dec. 2021, doi: 10.3303/CET2189004.

N. Hagemann, K. Spokas, H.-P. Schmidt, R. Kägi, M. Böhler, and T. Bucheli, “Activated Carbon, Biochar and Charcoal: Linkages and Synergies across Pyrogenic Carbon’s ABCs,” Water, vol. 10, no. 2, p. 182, Feb. 2018, doi: 10.3390/w10020182.

K. Weber and P. Quicker, “Properties of biochar,” Fuel, vol. 217, pp. 240–261, Apr. 2018, doi: 10.1016/j.fuel.2017.12.054.

D. Montenegro Quesada, N. Montero Rambla, R. A. Hernández Chaverri, and J. Méndez Arias, “Evaluación del uso de carbón activado producido a partir de rastrojo de piña en la remoción de azul de metileno,” Ingeniería, vol. Volumen Especial-Jornadas de Investigación, pp. 101–104, 2020.

G. L. May Carrillo and M. D. Tun Caamal, “Producción de biocarbón de rastrojo de piña (Ananas comosus) y su aplicación en aguas residuales,” B.S. thesis, Univ. Earth, Guápiles, Costa Rica, 2019. [Online]. Available: https://repositorio.earth.ac.cr/handle/UEARTH/442

K. Iamsaard, C.-H. Weng, L.-T. Yen, J.-H. Tzeng, C. Poonpakdee, and Y.-T. Lin, “Adsorption of metal on pineapple leaf biochar: Key affecting factors, mechanism identification, and regeneration evaluation,” Bioresour. Technol., vol. 344, p. 126131, Jan. 2022, doi: 10.1016/j.biortech.2021.126131.

T. R. Brown, M. M. Wright, and R. C. Brown, “Estimating profitability of two biochar production scenarios: slow pyrolysis vs fast pyrolysis,” Biofuels Bioprod. Biorefining, vol. 5, no. 1, pp. 54–68, Jan. 2011, doi: 10.1002/bbb.254.

Y. X. Seow et al., “A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications,” J. Environ. Chem. Eng., vol. 10, no. 1, p. 107017, Feb. 2022, doi: 10.1016/j.jece.2021.107017.

A. M. Ulate Brenes and J. Jaikel Víquez, “Evaluación del efecto del pretratamiento del rastrojo de piña, para la producción de hidrógeno vía reformado en fase acuosa (APR).,” Rev. Ing., vol. 31, no. 2, pp. 1–21, Feb. 2021, doi: 10.15517/ri.v31i2.43545.

R. Ulate Sancho, N. Montero Rambla, N. Hernández Montero, and E. Durán Herrera, “Licuefacción hidrotérmica del rastrojo de piña para la obtención de biocrudo/Hydrothermal liquefaction of pineapple stubble to obtain biocrude,” Ingeniería, vol. Volumen Especial-Jornadas de Investigación, pp. 105–108, 2020.

A. R. K. Gollakota, N. Kishore, and S. Gu, “A review on hydrothermal liquefaction of biomass,” Renew. Sustain. Energy Rev., vol. 81, pp. 1378–1392, Jan. 2018, doi: 10.1016/j.rser.2017.05.178.

A. Al-Wahaibi et al., “Techno-economic evaluation of biogas production from food waste via anaerobic digestion,” Sci. Rep., vol. 10, no. 1, p. 15719, Dec. 2020, doi: 10.1038/s41598-020-72897-5.

M. A. Vargas-Vargas, R. A. Hernández-Chaverri, and A. Jiménez-Silva, “Caracterización de la biomasa de piña (Ananas comosus) y su valoración en la propagación micelial del hongo shiitake (Lentinula edodes),” Yulök Rev. Innov. Académica, vol. 3, no. 1, pp. 13–27, 2019.

M. Samoraj et al., “The challenges and perspectives for anaerobic digestion of animal waste and fertilizer application of the digestate,” Chemosphere, vol. 295, p. 133799, May 2022, doi: 10.1016/j.chemosphere.2022.133799.

S. K. Pramanik, F. B. Suja, S. M. Zain, and B. K. Pramanik, “The anaerobic digestion process of biogas production from food waste: Prospects and constraints,” Bioresour. Technol. Rep., vol. 8, p. 100310, Dec. 2019, doi: 10.1016/j.biteb.2019.100310.

L. D. P. Castro-Molano, H. Escalante-Hernández, L. E. Lambis-Benítez, and J. D. Marín-Batista, “Synergistic effects in anaerobic codigestion of chicken manure with industrial wastes,” DYNA, vol. 85, no. 206, pp. 135–141, Jul. 2018, doi: 10.15446/dyna.v85n206.68167.

L. R. Miramontes-Martínez et al., “Anaerobic co-digestion of fruit and vegetable waste: Synergy and process stability analysis,” J. Air Waste Manag. Assoc., vol. 71, no. 5, pp. 620–632, May 2021, doi: 10.1080/10962247.2021.1873206.

P. Namsree, W. Suvajittanont, C. Puttanlek, D. Uttapap, and V. Rungsardthong, “Anaerobic digestion of pineapple pulp and peel in a plug-flow reactor,” J. Environ. Manage., vol. 110, pp. 40–47, Nov. 2012, doi: 10.1016/j.jenvman.2012.05.017.

G. Unnikrishnan and V. Ramasamy, “Anaerobic Digestion of Pineapple Waste for Biogas Production and Application of Slurry as Liquid Fertilizer Carrier for Phosphate Solubilizers,” Indian J. Agric. Res., no. Of, Jun. 2021, doi: 10.18805/IJARe.A-5777.

N. Pattharaprachayakul, N. Kesonlam, P. Duangjumpa, V. Rungsardthong, W. Suvajittanont, and B. Lamsal, “Optimization of Hydraulic Retention Time and Organic Loading Rate in Anaerobic Digestion of Squeezed Pineapple Liquid Wastes for Biogas Production,” Appl. Sci. Eng. Prog., vol. 14, no. 3, pp. 468–476, Apr. 2021, doi: 10.14416/j.asep.2021.04.004.

A. Azevedo, J. Gominho, and E. Duarte, “Performance of Anaerobic Co-digestion of Pig Slurry with Pineapple (Ananas comosus) Bio-waste Residues,” Waste Biomass Valorization, vol. 12, no. 1, pp. 303–311, Jan. 2021, doi: 10.1007/s12649-020-00959-w.

Louis L Faivor and Dana M Kirk, “Statistical Verification of a Biochemical Methane Potential Test,” in 2011 Louisville, Kentucky, August 7 - August 10, 2011, American Society of Agricultural and Biological Engineers, 2011. doi: 10.13031/2013.37363.

American Public Health Association, American Water Works Association, and Water Environment Federation, Standard Methods For the Examination of Water and Wastewater, 24th ed. Washington DC: APHA Press, 2023.

M. S. Peters, K. D. Timmerhaus, and R. E. West, Plant design and economics for chemical engineers, 5th ed. in McGraw-Hill chemical engineering series. New York: McGraw-Hill, 2003.

C. Y. Liao, Y. J. Guan, and M. Bustamante-Román, “Techno-Economic Analysis and Life Cycle Assessment of Pineapple Leaves Utilization in Costa Rica,” Energies, vol. 15, no. 16, p. 5784, Aug. 2022, doi: 10.3390/en15165784.

R. Rivera Salvador, “Estudio cinético de la digestión anaeróbica termofílica de pollinaza a escala piloto,” M.S. thesis, Inst. Politec. Nac., CDMX, México, 2010.

K. Rajendran, H. R. Kankanala, M. Lundin, and M. J. Taherzadeh, “A novel process simulation model (PSM) for anaerobic digestion using Aspen Plus,” Bioresour. Technol., vol. 168, pp. 7–13, Sep. 2014, doi: 10.1016/j.biortech.2014.01.051.

O. Yenigün and B. Demirel, “Ammonia inhibition in anaerobic digestion: A review,” Process Biochem., vol. 48, no. 5–6, pp. 901–911, May 2013, doi: 10.1016/j.procbio.2013.04.012.

J. D. Marin-Batista, L. Castro, and H. Escalante, “Efecto de la carga orgánica de la gallinaza de jaula en el potencial de biometanización,” Rev. Colomb. Biotecnol., vol. 17, no. 1, pp. 18–23, May 2015, doi: 10.15446/rev.colomb.biote.v17n1.39971.

A. N. Matheri, S. N. Ndiweni, M. Belaid, E. Muzenda, and R. Hubert, “Optimising biogas production from anaerobic co-digestion of chicken manure and organic fraction of municipal solid waste,” Renew. Sustain. Energy Rev., vol. 80, pp. 756–764, Dec. 2017, doi: 10.1016/j.rser.2017.05.068.

T. P. Devi and L. R. Singh, “The Relative Bromelain Contents in Different Parts of Pineapple Plant C. V. Queen,” Indian J Hill Farmg, vol. 14, no. 2, pp. 128–129, 2001.

T. Kaur, A. Kaur, and R. K. Grewal, “Kinetics studies with fruit bromelain (Ananas comosus) in the presence of cysteine and divalent ions,” J. Food Sci. Technol., vol. 52, no. 9, pp. 5954–5960, Sep. 2015, doi: 10.1007/s13197-014-1639-5.

K. Hagos, J. Zong, D. Li, C. Liu, and X. Lu, “Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives,” Renew. Sustain. Energy Rev., vol. 76, pp. 1485–1496, Sep. 2017, doi: 10.1016/j.rser.2016.11.184.

Matches, “Centrifugal Pump Cost Estimate,” Process Equipment Cost Estimates. https://matche.com/equipcost/Default.html (accessed Jun. 04, 2023).

Aspen Tech, “Aspen Process Economic Analyzer (APEA).” https://www.aspentech.com/en/products/engineering/aspen-plus (accessed Jan. 29, 2023).

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2023 Juliana Da Luz Castro, Juan Rojas Sossa, Mauricio Bustamante Román

Downloads

Download data is not yet available.