Abstract
Land value patterns show very distinct spatial associations with accessibility to urban centralities and physical factors in a territory. However, predictions based on models of this structure can be highly uncertain, as the underlying data also may show clustering (thus allowing for better predictions in more densely sampled areas). An assessment of this uncertainty for land value extrapolations in the the San José Metropolitan Region of Costa Rica is presented, via conditional Gaussian simulation, and the determinants of this uncertainty were explored, to find spatial strengths and weaknesses in the modeling efforts. The E-Type prediction from the conditional Gaussian simulation was found to marginally improve on ordinary kriging methods and it also provided explicit uncertainty patterns, which are the inverse of the land value prediction. The estimated uncertainty was found to decrease with characteristics that identify suitability for urban land use (and thus higher land values).
References
E. Pérez-Molina & M. Román-Forastelli, “Análisis geoestadístico de los patrones de valores del suelo en la Gran Área Metropolitana de Costa Rica”. Manuscript submitted for publication, 2023.
D.H. Easly, L.E. Borgman, & P.N. Shive, “Geostatistical simulation for geophysical applications. Part I: simulation”, Geophysics, vol. 55, no. 11, pp. 1435-1440, 1990, 10.1190/1.1442790.
M. Román, A. Quirós, A., E. Pérez et al., “Dinámica inmobiliario y formación de precios: primer mapa de valores de mercado del suelo en la GAM”. Proyecto ED-3466 Asesoría técnica y económica a la política pública. Escuela de Economía, Universidad de Costa Rica, San José, Costa Rica, 2023.
E. Pérez-Molina, “Exploring a multilevel approach with spatial effects to model housing price in San José, Costa Rica”, Env & Plan, vol. 49, no. 3, pp. 987-1004, 2022, doi: 10.1177/23998083211041122.
T. Bai & P. Tahmasebi, “Sequential Gaussian simulation for geosystems modeling: A machine learning approach”, Geosci Front, vol. 13, pp. 101258, 2022, doi: 10.1016/j.gsf.2021.101258.
N.A.C. Cressie, “Statistics for Spatial Data”, Wiley, New York, NY, 1993.
P. Goovaerts, “Geostatistics for Natural Resources Evaluation”, Oxford University Press, Oxford, United Kingdom, 1997.
E.J. Pebesma, “Multivariable geostatistics in S: the gstat package”, Comput & Geosci, vol. 30, pp. 683-691, 2004, doi: 10.1016/j.cageo.2004.03.012.
R Core Team, “R: A Language and Environment for Statistical Computing”, R Foundation for Statistical Computing, Vienna, Austria, 2023.
E. Pérez-Molina, “Understanding the spatial statistical properties of a real estate listings point pattern in San José, Costa Rica”, manuscript submitted for publication, 2023.
T. Viehmann, “Numerically more stable computation of the p-values for the two-sample Kolmogorov-Smirnov test”, arXiv preprint, arXiv:2102.08037, 2021.
S. Metahni, L. Coudert, E. Gloaguen et al., “Comparison of different interpolation methods and sequential Gaussian
simulation to estimate volumes of soil contaminated by As, Cr, Cu, PCP and dioxins/furans,” Environ Pollut, vol. 252, pp. 409-419, 2019, doi: 10.1016/j.envpol.2019.05.122
K. de Koening, T. Filatova, and O. Bin, “Improved Methods for Predicting Property Prices in Hazard Prone Dynamic
Markets,” Environ Resource Econ, vol. 69, pp. 247–263, 2018, doi: 10.1007/s10640-016-0076-5
R. Cellmer, “The Possibilities and Limiations of Geostatistical Methods in Real Estate Market Analysis,” Real Estate Manag, vol. 22, pp. 54-62, doi: 10.2478/remav-2014-0027
##plugins.facebook.comentarios##
![Creative Commons License](http://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2023 Eduardo Pérez Molina, Darío Vargas Aguilar