Abstract
The present research aims to formulate a thermoplastic polymer based on starch (TPS) extracted from a cassava variety, through a thermomechanical processing in an internal mixer. Three formulations, guided by preliminary tests, were analyzed to choose a base formulation. Polyvinyl alcohol (PVOH) was chosen to reinforce TPS. Likewise, a statistical study of the processing conditions was carried out, from which the temperature was optimized at 110 °C, the rotor speed at 75 rpm (1,25 Hz), and the processing time at 6 min. Finally, through adjustment of the relative percentages of the components, a material with a tensile stress of 15,4 ± 0,9 MPa and a strain deformation of 44 ± 11 % was achieved. An aging test showed that properties of the TPS materials reached stabilization after 15 days of their formation. In the same way, a biodegradability test showed a reduction in the plastic mass of 98,5 ± 0,3 % after 22 days of being buried. Under controlled conditions, the material exhibits adequate mechanical properties for use in everyday applications; however, it is necessary to address its sensitivity to ambient humidity, as this significantly influences these mechanical properties.
References
E. Palm, J. Hasselbalch, K. Holmberg y T. D. Nielsen, “Narrating plastics governance: policy narratives in the European plastics strategy”, Environmental Politics, vol. 31, no. 3, pp. 365-385, 2022, doi:10.1080/09644016.2021.1915020.
A. Beltrán-Sanahuja, A. Benito-Kaesbach, N. Sánchez-García y C. Sanz-Lázaro, “Degradation of conventional and biobased plastics in soil under contrasting environmental conditions”, Science of the Total Environment, vol. 787, p. 147678, sep. 2021, doi:10.1016/j.scitotenv.2021.147678.
J. Liu, Y. Yang, L. An, Q. Liu y J. Ding, “The Value of China’s Legislation on Plastic Pollution Prevention in 2020”, Bulletin of Environmental Contamination and Toxicology, vol. 108, pp. 601-608, sep. 2021, doi:10.1007/s00128-021-03366-6.
T. D. Nielsen, K. Holmberg y J. Stripple, “Need a bag ? A review of public policies on plastic carrier bags – Where , how and to what effect ?”, Waste Management, vol. 87, pp. 428–440, mar. 2019, doi:10.1016/j.wasman.2019.02.025.
S. O. Cinar, Z. K. Chong, M. A. Kucuker, N. Wieczorek, U. Cengiz y K. Kuchta, “Bioplastic production from microalgae: A review”, International Journal of Environmental Research and Public Health, vol. 17, p. 3842, may. 2020, doi:10.3390/ijerph17113842.
M. M. Altayan, T. Al Darouich y F. Karabet, “Thermoplastic starch from corn and wheat: a comparative study based on amylose content”, Polymer Bulletin, vol. 78, pp. 3131–3147, jun. 2021, doi:10.1007/s00289-020-03262-9.
C. T. Andrade y E. G. A. Rojas, “Biopolymers”, en Biopolymer Engineering in Food Processing, V. R. N. Telis, Ed. Boca Raton, FL, Estados Unidos: CRC Press, 2012, pp. 50-51.
S. P. Bangar, W. S. Whiteside, A. O. Ashogbon y M. Kumar, “Recent advances in thermoplastic starches for food packaging: A review”, Food Packaging and Shelf Life, vol. 30, p. 100743, dic. 2021, doi:10.1016/j.fpsl.2021.100743.
Z. N. Diyana et al., “Physical Properties of Thermoplastic Starch Derived from Natural Resources and Its Blends: A Review”, Polymers, vol. 13, p. 1396, abr. 2021, doi:10.3390/polym13091396.
K. Martinez-Villadiego, M. J. Arias-Tapia, J. Useche y D. Escobar-Macías, “Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Review”, Journal of Polymers and the Environment, vol. 30, pp. 75-91, ene. 2022, doi:10.1007/s10924-021-02207-1.
L. Moscicki, M. Mitrus, A. Wojtowicz, T. Oniszczuk y A. Rejak, “Extrusion-Cooking of Starch”, en Advances in Agrophysical Research, S. Grundas y A. Stepniewski, Eds. Londres, Reino Unido: InTechOpen, 2013, pp. 319-346.
V. Florencia, O. V. Lopez y M. A. Garcia, “Exploitation of by-products from cassava and ahipa starch extraction as filler of thermoplastic corn starch”, Composites Part B, vol. 182, no. 107653, pp. 1-8, nov. 2019, doi:10.1016/j.compositesb.2019.107658.
E. Fekete, E. Bella, E. Csiszar y J. Moczo, “Improving physical properties and retrogradation of thermoplastic starch by incorporating agar”, International Journal of Biological Macromolecules, vol. 136, pp. 1026-1033, jun. 2019, doi:10.1016/j.ibiomac.2019.06.109
J. Araya-Navarro, “Producción de un biocompuesto a base de almidón termoplástico de yuca amarga (manihot Esculenta crantz) y nanocelulosa obtenida de rastrojo de piña (Ananas comosus)”, Tesis de Licenciatura, Escuela de Química, Universidad Nacional, Heredia, Costa Rica, 2021.
Standard Test Method for Conditioning Plastics for Testing, ASTM D618-21, American Society for Testing and Materials, PA, Estados Unidos, jul. 2021.
Standard Test Method for Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials, ASTM D5229/D5229M-20, American Society for Testing and Materials, PA, Estados Unidos, abr. 2020.
H. Schmitt, A. Guidez, K. Prashantha, J. Soulestin, M. F. Lacrampe y P. Krawczak, “Studies on the effect of storage time and plasticizers on the structural variations in thermoplastic starch”, Carbohydrate Polymers, vol. 115, pp. 364–372, ene. 2015, doi: 10.1016/j.carbpol.2014.09.004.
M. Combrzyński, “Biodegradability of thermoplastic starch ( TPS )”, Teka. Commission of Motorization and Energetics in Agriculture, vol. 12, no. 1, pp. 21–23, 2012.
M. Bootklad y K. Kaewtatip, “Biodegradability, mechanical, and thermal properties of thermoplastic starch/cuttlebone composites”, Polymer Composites, vol. 36, no. 8, pp. 1401–1406, ago. 2015, doi:10.1002/pc.23046.
J. M. Castro, et al., “Thermoplastic starch/polyvinyl alcohol blends modification by citric acid-glycerol polyesters”, International Journal of Biological Macromolecules, vol. 244, no. 125478, pp. 1-11, jun. 2023, doi: 10.1016/j.ijbiomac.2023.125478.
C. Ge, B. Lansing y C. L. Lewis, “Thermoplastic starch and poly(vinyl alcohol) blends centered barrier film for food packaging applications”, Food Packaging and Shelf Life, vol. 27, no. 100610, pp. 1-9, dic. 2020, doi: 10.1016/j.fpsl.2020.100610.
M. Hietala, A. P. Mathew y K. Oksman, “Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion”, European Polymer Journal, vol. 49, no. 4, pp. 950–956, abr. 2013, doi:10.1016/j.eurpolymj.2012.10.016.
S. Saparova, et al., “Effects of glycerol content on structure and molecular motion in thermoplastic starch-based nanocomposites during long storage”, International Journal of Biological Macromolecules, vol. 253, no. 126911, pp. 1-10, sep. 2023, doi: 10.1016/j.ijbiomac.2023.126911.
L. Leroy, G. Stoclet, J.-M. Lefebvre y V. Gaucher, “Mechanical behavior of thermoplastic starch: rationale for the temperature-relative humidity equivalence”, Polymers, vol. 14, no. 2531, pp. 1-11, jun. 2022, doi: 10.3390/polym14132531.
N. Smidova, et al., “Influence of air humidity level on the structure and mechanical properties of thermplastic starch-montmorillonite nanocomposite during storage”, Materials, vol. 16, no. 900, ene. 2023, doi: 10.3390/ma16030900.
N. V. Khoi, et al., “Study on characteristics of thermoplastic starch based on Vietanamese arrowroot starch plasticized by glycerol”, Vietnam Journal of Chemistry, vol. 61, no. 1, pp. 59-64, feb. 2023, doi: 10.1002/vjch.202100148.
J. L. Lopez Teran, E. V. Cabrera Maldonado, J. C. Araque Rangel, J. Poveda Otazo y M. I. Beltran Rico, “Development of antibacterial thermoplastic starch with natural oils and extracts: structural, mechanical and thermal properties”, Polymers, vol. 16, no. 180, pp. 1-20, ene. 2024, doi: 10.3390/polym16020180.
Comments
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2024 Guillermo Alfonso Jiménez Villalta, Barbara Miranda Morales, Guillermo Moya Alvarado