Resumen
El objetivo de los modelos de distancia de viaje es entender el comportamiento de viajede los usuarios, de forma tal que se puedan implementar políticas para reducir la distancia de viaje y, con esto, externalidades del transporte tales como contaminación del aire, congestión y accidentes. Los modelos Bayesianos Jerárquicos ofrecen una metodología flexible para analizar el comportamiento de viaje al permitir el estudio tanto de las decisiones de corto plazo de la actividad y las selecciones de viaje así como las decisiones de largo plazo como la localización de la vivienda y el lugar de trabajo. Como la distancia de viaje está censurada en cero para una proporción importante de los datos, los parámetros obtenidos por medio de regresiones lineales convencionales están sesgados. Estimaciones no sesgadas de los parámetros pueden ser obtenidas usando modelos Tobit. El propósito de este artículo es demostrar la aplicación de modelos Tobit Bayesianos jerárquicos al análisis de la distancia de viaje, considerando la naturaleza multinivel y censurada de los datos.
Los resultados muestran que el modelo Tobit Bayesiano jerárquico tiene un desempeño
significativamente mejor que el modelo no jerárquico al medir la bondad de ajuste la Devianza t el Criterio de Información de la Devianza. Más aún, la varianza es estadísticamente muy significativa tanto para el nivel individual como para el nivel de ubicación, lo cual demuestra laimportancia de usar una metodología multinivel.
Citas
Voorhees AM, Bellomo SJ, Schofer JL, Cleveland DE. Factors in Work Trip Lengths. Highway Res Rec. 1966; 141: 24-46.
Gruen AC. Travel time and transportation policy. J Urban Econ. 1980; 8(2): 264-271.
Izraeli O, McCarthy TR. Variations in Travel Distance, Travel Time and Model Choice among SMSAs. Journal of Transport Economics and Policy. 1985; 19(2): 139-160.
Golob TF, Wissen LV. A joint household travel distance generation and car ownership model. Transp Res Part B Method. 1989; 23(6): 471-491
Gordon P, Kumar A, Richardson HW. Gender differences in metropolitan travel behavior. Reg Stud. 1989; 23(6): 499-510.
Brännäs K, Laitila T. Modelling and prediction of travel distance by car. Transportation planning and technology. 1991; 16(2): 129-143.
Johnston-Anumonwo I. The Influence of Household Type on Gender Differences in Work Trip Distance. Prof Geogr. 1992: 44(2): 161-169.
Rouwendal J, Rietveld P. Changes in commuting distances of Dutch households. Urban Stud. 1994; 31(9): 1545-1557.
Aronsson T, Brännäs K. Household work travel time. Reg Stud. 1996; 30(6): 541-548.
Fang HA. A discrete–continuous model of households’ vehicle choice and usage, with an application to the effects of residential density. Transp Res Part B Method. 2008; 42(9): 736-758.
Manaugh K, Miranda-Moreno LF, El-Geneidy AM. The effect of neighborhood characteristics, accessibility, home–work location, and demographics on commuting distances. Transportation.2010: 37(4): 627-646.
Ortuzar J, Willumsen LG. Modelling transport. 3rd ed. John Wiley & Sons; 2011.
Miller EJ. Land use transportation modeling. In: Goulias KG, editor. Transportation Systems Planning, Methods and Applications. Boca Raton: CRC Press; 2003.
McQuaid RW. A model of the travel to work limits of parents. Research in Transportation Economics. 2009; 25(1): 19-28.
Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian data analysis. 2nd ed. London: Chapman & Hall/CRC; 2003.
Salomon I. Ben-Akiva M. The use of the life-style concept in travel demand models. Environ Plan A. 1983; 15(5): 623-638.
Tobin J. Estimation of relationships for limited dependent variables. Econometrica. 1958: 26(1): 24-36.
Redmond LS, Mokhtarian PL. The positive utility of the commute: modeling ideal commute time and relative desired commute amount. Transportation. 2001; 28(2): 179-205.
Golob TF. The dynamics of household travel time expenditures and car ownership decisions. Transp Res Part A General. 1990; 24(6): 443-463.
Schwanen T, Mokhtarian PL. What if you live in the wrong neighborhood? The impact of residential neighborhood type dissonance on distance traveled. Transp Res D Transp Environ. 2005; 10(2): 127-151.
Greene WH. Econometric Analysis. 7th ed. Pearson; 2012.
Aguiar-Moya JP, Prozzi JA. Accounting for Censoring and Unobserved Heterogeneity in Pavement Cracking. Journal of Infrastructure Systems. 2014: 21(2): 04014044.
Congdon P. Bayesian statistical modelling. John Wiley & Sons; 2001.
Yang J, Miwa T, Morikawa T, Yamamoto T. Forecasting the Demand of Electric Vehicle Ownership and Usage in the Chukyo Region in Japan. Fourth International Conference on Transportation Engineering, American Society of Civil Engineers. 2013: 245-251
Brownstone D, Fang HA. A vehicle ownership and utilization choice model with endogenous residential density. J Transp Land Use. 2014; 7(2): 135-151
Spiegelhalter D, Best N, Carlin BP, Linde A. Bayesian Measures of Model Complexity and Fit. J R Stat Soc Series B Stat Methodol. 2002; 64(4): 583–639.
Lunn D, Spiegelhalter D, Thomas A, Best N. The BUGS project: Evolution, critique, and future directions, Stat Med. 2009; 28: 3049-3067.
Maat K. Timmermans H. A causal model relating urban form with daily travel distance through activity/travel decisions. Transportation Planning and Technology. 2009;32(2): 115-134
Wilson FD. Journey to Work: Metropolitan-nonmetropolitan comparisons. Institute for research on Poverty. University of Wisconsin-Madison, 1976.
Feng J, Dijst M, Wissink B, Prillwitz J. The impacts of household structure on the travel behavior of seniors and young parents in China. J Transp Geogr. 2013; 30: 117-126.
LaMondia J, Aultman-Hall L, Greene E. Long-Distance Work and Leisure Travel Frequencies: Ordered Probit Analysis Across Non-Distance-Based Definitions. Transp Res Rec. 2014; 2413: 1-12.
Jorritsma P, Schaap NTW. Families on the run: How do Dutch households with young children organize their travel behavior? In 5th International Conference on Women's Issues in Transportation. 2014: 97-108.
Vance C, Hedel R. The Impact of Urban Form on Automobile Travel: Disentangling Causation from Correlation. Transportation. 2007; 34: 575-588.