Abstract
In animal production, controlling the growth of pathogenic or opportunistic microorganisms is essential to ensure both human and animal health, as well as to improve productive performance. In this context, the present study aimed to evaluate the effect of organic acids supplemented in drinking water on the productive parameters of broiler chickens. The experiment was conducted at the experimental field of the Salvadoran University Alberto Masferrer, located in Zapotitan, El Salvador, using two groups of 200 Cobb MX broiler chickens each. One group, referred to as the "Treatment" group, received a registered commercial product in their drinking water containing a mixture of four organic acids: citric acid (1.0%), ascorbic acid (1.1%), lactic acid (0.9%), and acetic acid (0.9%). The second group, designated as the "Control" group, did not receive this acid mixture. Various productive parameters were evaluated, such as weight gain, mortality, and intestinal integrity. Additionally, cloacal swabs were collected to analyze differences in intestinal microbiota. Results showed the absence of two bacterial genera, Clostridium perfringens, and Bordetella sp., in the Treatment group compared to the Control group. The treated group demonstrated significantly superior productivity outcomes, with a 10.72% increase in weight (p < 0.05) and a reduction in mortality to 1.50%, compared to 3.00% in the untreated group. Furthermore, improved intestinal integrity was observed in animals that received the acid mixture. These findings highlight the potential of the evaluated products, suggesting the need for further research into their effects to optimize poultry production.
References
Akşit, M., E. Göksoy, F. Kök, D. Özdemir, y M. Özdogan. 2006. The impacts of organic acid and essential oil supplementations to diets on the microbiological quality of chicken carcasses. Archiv fur Geflugelkunde, 70 (4): 168–173. https://www.european-poultry-science.com/the-impacts-of-organic-acid-and-essential-oil-supplementations-to-133diets-on-the-microbiological-quality-of-chicken-carcasses,QUlEPTQyMTcxOTQmTUlEPTE2MTAxNA.html.
Ángel-Isaza, J., N. Mesa-Salgado, y W. Narváez-Solarte. 2019. Ácidos orgánicos, una alternativa en la nutrición avícola: una revisión. CES Medicina Veterinaria y Zootecnia, 14 (2): 45–58. https://revistas.ces.edu.co/index.php/mvz/article/view/4808.
Broom, L. J., M. Wood, E. Park, y U. Kingdom. 2015. Organic acids for improving intestinal health of poultry. World’s Poultry Science Journal, 71: 630–642. doi: 10.1017/S0043933915002391.
Calvo, J., y L. Martínez-Martínez. 2009. Mecanismos de acción de los antimicrobianos. Enferemedades Infecciosas y Microbiología Clínica, 27 (1): 44–52. doi: 10.1016/j.eimc.2008.11.001.
Chowdhury, R., K. M. S. Islam, M. J. Khan, M. R. Karim, M. N. Haque, M. Khatun, y G. M. Pesti. 2009. Effect of citric acid, avilamycin, and their combination on the performance, tibia ash, and immune status of broilers. Poultry Science, 88 (8): 1616–1622. doi: 10.3382/ps.2009-00119.
Ducatelle, R., E. Goossens, V. Eeckhaut, y F. Van Immerseel. 2023. Poultry gut health and beyond. Animal Nutrition, 13: 240–248. doi: 10.1016/j.aninu.2023.03.005.
Elnesr, S. S., M. Alagawany, H. A. M. Elwan, M. A. Fathi, y M. R. Farag. 2020. Effect of Sodium Butyrate on Intestinal Health of Poultry-A Review. Annals of Animal Science, 20 (1): 29–41. doi: 10.2478/aoas-2019-0077 .
Fernandes, B. C. S., M. R. F. V. Martins, A. A. Mendes, E. L. Milbradt, C. Sanfelice, B. B. Martins, E. F. Martins y C. Bresne. 2014. Intestinal integrity and performance of broiler chickens fed a probiotic, a prebiotic, or an organic acid. Revista Brasileira de Ciencia Avicola, 16 (4): 417–424. doi: 10.1590/1516-635x1604417-424.
Giannenas, I., E. Papadopoulos, E. Tsalie, E. Triantafillou, S. Henikl, K. Teichmann, y D. Tontis. 2012. Assessment of dietary supplementation with probiotics on performance, intestinal morphology and microflora of chickens infected with Eimeria tenella. Veterinary Parasitology, 188 (1–2): 31–40. doi: 10.1016/j.vetpar.2012.02.017.
GNU Project. 2015. GNU PSPP. Versión 0.8.5. Free Software Foundation. Boston, MA.
Haq, Z., A. Rastogi, R. K. Sharma, y N. Khan. 2017. Advances in role of organic acids in poultry nutrition: A review. Journal of Applied and Natural Science, 9 (4): 2152–2157. doi: 10.31018/jans.v9i4.1502.
Herrera-Soto, D., y H. Benavides-Barquero. 2007. El Entorno internacional del sector avícola Centroamericano. Instituto Interamericano para la Cooperación en la Agricultura, San José, Costa Rica.
Khan, S. H., y J. Iqbal. 2016. Recent advances in the role of organic acids in poultry nutrition. Journal of Applied Animal Research, 44 (1): 359–369. doi: 10.1080/09712119.2015.1079527.
Kopecký, J., C. Hrnčár, y J. Weis. 2012. Effect of Organic Acids Supplement on Performance of Broiler Chickens. Veterinary Medicine International, 1: 45. doi: 10.4061/2010/479485.
Macgowan, A., y E. Macnaughton. 2017. Antibiotic resistance. Medicine, 45 (10), 622–628. doi: 10.1016/j.mpmed.2017.07.006.
Mani-López, E., H. S. García, y A. López-Malo. 2012. Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Research International, 45 (2): 713–721. doi: 10.1016/j.foodres.2011.04.043.
MARN (Ministerio de Medio Ambiente y Recursos Naturales de El Salvador). 2024. Meteorología. https://www.snet.gob.sv/ver/meteorologia.
Mirza, M. W., Z. U. Rehman, y N. Mukhtar. 2016. Use of Organic Acids as Potential Feed Additives in Poultry Production. Journal of World´s Poultry Research, 6 (3): 105–116.
Nowakiewicz, A., P. Zieba, S. Gnat, y Ł. Matuszewski. 2020. Last Call for Replacement of Antimicrobials in Animal Production : Modern Challenges, Opportunities, and Potential Solutions. Antibiotics, 9 (12): 883. https://pubmed.ncbi.nlm.nih.gov/33317032/.
Odugbo, M. O., U. Musa, S. O. Ekundayo, P. A. Okewole, y J. Esilonu. 2006. Bordetella avium Infection in Chickens and Quail in Nigeria: Preliminary Investigations. Veterinary Research Communications, 30: 1–5. https://link.springer.com/article/10.1007/s11259-005-3206-z.
Polycarpo, G. V., I. Andretta, M. Kipper, V. C. Cruz-Polycarpo, J. C. Dadalt, P. H. M. Rodrigues, y R. Albuquerque. 2017. Meta-analytic study of organic acids as an alternative performance-enhancing feed additive to antibiotics for broiler chickens. Poultry Science, 96 (10): 3645–3653. doi: 10.3382/ps/pex178.
Rosas-Leal, D. A., D. P. López-velandia, M. I. Torres-caycedo, y M. A. Merchán. 2019. Perfiles de susceptibilidad de grupos bacterianos aislados de productos cárnicos en Tunja , Boyacá. Revista Investigación en Salud. Universidad de Boyacá, 6 (2): 19–39. https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/439.
Samad, A. 2022. Antibiotics Resistance in Poultry and its Solution. Devotion Journal of Community Service, 3 (10): 999–1020. doi: 10.36418/dev.v3i10.206.
Scicutella, F., F. Mannelli, M. Daghio, C. Viti, y A. Buccioni. 2021. Polyphenols and organic acids as alternatives to antimicrobials in poultry rearing: A review. Antibiotics, 10 (8). doi: 10.3390/antibiotics10081010.
Sterzo, E. V., J. B. Paiva, A. L. Mesquita, O. C. Freitas Neto, y A. Berchieri. 2007. Organic acids and/or compound with defined microorganisms to control Salmonella enterica serovar Enteritidis experimental infection in chickens. Revista Brasileira de Ciencia Avícola, 9 (1): 69–73. doi: 10.1590/S1516-635X2007000100010.
Swirski, A. L., H. Kasab-Bachi, J. Rivers, y J. B. Wilson. 2020. Data driven enhancements to the intestinal integrity (I2) index: A novel approach to support poultry sustainability. Agriculture, 10 (8): 1–13. doi: 10.3390/agriculture10080320.
Van Immerseel, F., J. De Buck, F. Pasmans, G. Huyghebaert, F. Haesebrouck, y R. Ducatelle. 2010. Clostridium perfringens in poultry : an emerging threat for animal and public health. Avian Pathology, 33 (6): 537–549. doi: 10.1080/03079450400013162.
Vieira, M. S., M. L. Moraes, T. B. Stefanello, F. Bertollini Junior, G. M. M. Silva, J. M. M. Tavares, C. Y. Nakamatsu, L. C. R. V. Arantes, y E. Satin. 2022. Intestinal health improvement with protected organic acids and essential oils for pullets raised under field conditions. Frontiers in Animal Science, 3: 1–12. doi: 10.3389/fanim.2022.1001189.
Comments
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.