Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Decadal increase in seagrass biomass and temperature at the CARICOMP site in Bocas del Toro, Panama
PDF

Keywords

caribbean
panama
caricomp
time series
productivity
thalassia testudinum
caribe
panamá
caricomp
series temporales
productividad
thalassia testudinum

How to Cite

López Calderón, J. M., Guzmán, H. M., Jácome, G. E., & Barnes, P. A. G. (2013). Decadal increase in seagrass biomass and temperature at the CARICOMP site in Bocas del Toro, Panama. Revista De Biología Tropical, 61(4), 1815–1826. https://doi.org/10.15517/rbt.v61i4.12854

Abstract

The Caribbean Coastal Marine Productivity Program (CARICOMP) was launched in 1993 to study regional long-term interactions between land and sea, taking standardized measurements of productivity and biomass of mangroves, coral reefs and seagrasses. Since 1999 continuous measurements of seagrass (Thalassia testudinum) parameters as well as environmental data have been recorded in Caribbean Panama. Replicate stations were selected near the Smithsonian Tropical Research Institute in Bocas del Toro. Sediment cores and quadrants were placed there to estimate biomass and productivity, respectively. Mean values for productivity, standing crop, turnover rate, total dry biomass, and Leaf Area Index were 1.74gDW/m2/d, 66.6gDW/m2, 2.62%/d, 1 481 gDW/m2, and 4.65, respectively. Total dry biomass (shoots, rhizomes and roots) and LAI of T. testudinum increased significantly during the study period. Mean values for total rainfall, Secchi disk depth, sea surface temperature, and salinity were 3 498mm, 8.24m, 28.79°C, and 32.26psu, respectively. Sea surface temperature was the only environmental variable with a statistically significant change, increasing from 1999 to 2010. Correlation between sea surface temperature and T. testudinum parameters (total biomass and LAI) were both positive and significant. Human population has increased dramatically over the last ten years in Bocas del Toro region, increasing pressure (deforestation, runoff, wastewater) over coastal ecosystems (seagrasses, mangroves, coral reefs). Change in the abundance of T. testudinum may be linked to ocean warming, as a consequence to satisfy plant’s metabolic requirements, although other local factors need to be analyzed (reduced grazing and increased eutrophication). A further warming of the ocean could have a negative effect on T. testudinum population, increasing respiratory demands and microbial metabolism.
https://doi.org/10.15517/rbt.v61i4.12854
PDF

##plugins.facebook.comentarios##

Downloads

Download data is not yet available.