Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Identification of gene fragments related to nitrogen deficiency in Eichhornia crassipes (Pontederiaceae)
PDF
HTML

Keywords

Eichhornia crassipes
SSH
deficient nitrogen
BlastX analysis
COG analysis
GO analysis
Eichhornia crassipes
SSH
deficient nitrogen
BlastX analysis
COG analysis
GO analysis

How to Cite

Fu, M., Jiang, L., Li, Y., Yan, G., Zheng, L., & Peng, J. (2014). Identification of gene fragments related to nitrogen deficiency in Eichhornia crassipes (Pontederiaceae). Revista De Biología Tropical, 62(4), 1637–1648. https://doi.org/10.15517/rbt.v62i4.12892

Abstract

Eichhornia crassipes is an aquatic plant native to the Amazon River Basin. It has become a serious weed in freshwater habitats in rivers, lakes and reservoirs both in tropical and warm temperate areas worldwide. Some research has stated that it can be used for water phytoremediation, due to its strong assimilation of nitrogen and phosphorus, and the accumulation of heavy metals, and its growth and spread may play an important role in environmental ecology. In order to explore the molecular mechanism of E. crassipes to responses to nitrogen deficiency, we constructed forward and reversed subtracted cDNA libraries for E. crassipes roots under nitrogen deficient condition using a suppressive subtractive hybridization (SSH) method. The forward subtraction included 2 100 clones, and the reversed included 2 650 clones. One thousand clones were randomly selected from each library for sequencing. About 737 (527 unigenes) clones from the forward library and 757 (483 unigenes) clones from the reversed library were informative. Sequence BlastX analysis showed that there were more transporters and adenosylhomocysteinase-like proteins in E. crassipes cultured in nitrogen deficient medium; while, those cultured in nitrogen replete medium had more proteins such as UBR4-like e3 ubiquitin-protein ligase and fasciclin-like arabinogalactan protein 8-like, as well as more cytoskeletal proteins, including actin and tubulin. Cluster of Orthologous Group (COG) analysis also demonstrated that in the forward library, the most ESTs were involved in coenzyme transportation and metabolism. In the reversed library, cytoskeletal ESTs were the most abundant. Gene Ontology (GO) analysis categories demonstrated that unigenes involved in binding, cellular process and electron carrier were the most differentially expressed unigenes between the forward and reversed libraries. All these results suggest that E. crassipes can respond to different nitrogen status by efficiently regulating and controlling some transporter gene expressions, certain metabolism processes, specific signal transduction pathways and cytoskeletal construction. 

https://doi.org/10.15517/rbt.v62i4.12892
PDF
HTML

References

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403-410.

Berg, G. M., Shrager, J., Glöckner, G., Arrigo, K. R., & Grossman, A. R. (2008). Understanding nitrogen limitation Aureococcus anophagefferens (Pelagophyceae) through cDNA and qRT-PCR analysis. Journal of Phycology, 44, 1235-1249.

Bertl, A., Reid, J. D., Sentenac, H., & Slayman, C. L. (1997). Functional comparison of plant inward rectifier channels expressed in yeast. Journal of Experimental Botany, 48, 405-413.

Caldelas, C., Iglesia-Turino, S., Araus, J. L., Bort, J., & Febrero, A. (2009). Physiological responses of Eichhornia crassipes (Mart.) Solms to the combined exposure to excess nutrients and Hg. Brazilian Journal of Plant Physiology, 21, 01-12.

Casabianca, M. L. D., Laugier, T., & Posada, F. (1995). Petroliferous wastewater treatment with water hyacinth: experimental statement. Waste Management, 15, 651-655.

Chen, X., Chen, X. X., Wan, X. W., Weng, B. Q., & Huang, Q. (2010). Water hyacinth (Eichhornia crassipes) waste as an adsorbent for phosphorus removal from swine wastewater. Bioresource Technology, 101, 9025-9030.

Deng, H., Ye, Z. H., & Wong, M. H. (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environmental Pollution, 132, 29-40.

Diatchenko, L., Lau, Y. F. C., Campbell, A. P., Chenchik, A., Moqadam, F., Huang, B., Lukyanov, S., Lukyanov, K., Gurskaya, N., Sverdlov, E. D., & Siebert, P. D. (1996). Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of the National Academy of Sciences of the Unite States of America, 93, 6025-6030.

Dyhrman, S. T. (2008). Molecular approaches to diagnosing nutritional physiology in harmful algae: Implications for studying the effects of eutrophication. Harmful Algae, 8, 167-174.

El-Gendy, A. S., Biswas, N., & Bewtra, J. K. (2006). Municipal landfill leachate treatment for metal removal using water hyacinth in a floating aquatic system. Water Environment Research, 78(9), 951-964.

Flores, E. & Herrero, A. (2005). Nitrogen assimilation and nitrogen control in cyanobacteria. Biochemical Society Transactions, 33, 164-166.

Herrero, A., Muro-Pastor, A. M., & Flores, E. (2001). Nitrogen control in cyanobacteria. Journal of Bacteriology, 183, 411-425.

Hildebrand, M. (2005). Cloning and functional characterization of ammonium transporters from the marine diatom Cylindrotheca fusiformis. Journal of Phycology, 41, 105-113.

Jahna, T. P., Anders, L. B., Zeuthen, T., Holm, L. M., Klaerke, D. A., Mohsin, B., Kühlbrandt, W., & Schjoerring, J. K. (2004). Aquaporin homologuesin plants and mammals transport anunonia. FEBS Letters, 574, 31-36.

Johnson, K. L., Johes, B. J., Bacic, A., & Schultz, C. J. (2003). The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. Plant Physiology, 133, 1911-1925.

Liu, L. H., Ludewig, U., Gassert, B., Frommer, W. B., & von Wirén, N. (2003). Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physio1ogy, 133, 1220-1228.

Livak, K. J. & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25, 402-408.

Li, W. G., Gong, H. M., & Chang, T. J. (2008). Efects of nitrogen form on growth and physiological responses of an aquatic plant Eichhornia crassipes. Journal of Agro-Environment Science, 27, 1545-1549.

Loqué, D., Ludewig, U., Yuan, L. X., & von Wirén, N. (2005). Tonoplast intrinsic proteins AtT1P2;1 and AtT1P2;3 facilitate NH3 transport into the vacuole. Plant Phlysio1ogy, 137, 671-680.

Lu, J. B., Fu, Z. H., & Yin, Z. Z. (2008). Performance of a water hyacinth (Eichhornia crassipes) system in the treatment of wastewater from a duck farm and the effects of using water hyacinth as duck feed. Journal of Environmental Sciences, 20, 513-519.

Nakatani, Y., Konishi, H., Vassilev, A., Kurooka, H., Ishiguro, K., Sawada, J., Ikura, T., Korsmeyer, S. J., Qin, J., & Herlitz, A. M. (2005). p600, a unique protein required for membrane morphogenesis and cell survival. Proceedings of the National Academy of Sciences of the Unite States of America, 102, 15093-15098.

Odjegba, V. J. & Fasidi, I. O. (2007). Changes in antioxidant enzyme activities in Eichhornia crassipes (Pontederiaceae) and Pistia stratiotes (Araceae) under heavy metal stress. Revista de Biología Tropical, 55, 815-823.

Reddy, K. R., Agami, M., & Tucker, J. C. (1989). Influence of nitrogen supply rates on growth and nutrient storage by water hyacinth (Eichhornia crassipes (Mart.) Solms) plants. Aquatic Botany, 36, 33-43.

Reddy, K. R., Agami, M., & Tucker, J. C. (1990). Influence of phosphorus supply rates on growth and nutrient storage by water hyacinth (Eichhornia crassipes (Mart.) Solms) plants. Aquatic Botany, 37, 355-365.

Ripley, B. S., Muller, E., Behenna, M., Whittington-Jones, G. M., & Hill, M. P. (2006). Biomass and photosynthetic productivity of water hyacinth (Eichhornia crassipes) as affected by nutrient supply and mirid (Eccritotarus catarinensis) biocontrol. Biological Control, 39, 392-400.

Tatusov, R. L., Koonin, E. V., & Lipman, D. J. (1997). A genomic perspective on protein families. Science, 278, 631-637.

Tatusov, R. L., Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Kiryutin, B., Koonin, E. V., Krylov, D. M., Mazumder, R., Mekhedov, S. L., Nikolskaya, A. N., Rao, B. S., Smirnov, S., Sverdlov, A. V., Vasudevan, S., Wolf, Y. I., Yin, J. J., & Natale, D. A. (2003). The COG database: an updated version includes eukaryotes. BMC Bioinformatics, 4, 41.

Wang, C., Zhang, S. H., Wang, P. F., Li, W., & Lu, J. (2010). Effects of ammonium on the antioxidative response in Hydrilla verticillata (L.f.) Royle plants. Ecotoxicology and Environmental Safety, 73, 189-195.

Wang, Z., Zhang, Z., Zhang, Y., Zhang, J., Yan, S., & Guo, J. (2013). Nitrogen removal from Lake Caohai, a typical ultra-eutrophic lake in China with large scale confined growth of Eichhornia crassipes. Chemosphere, 92(2), 177-83. doi: 10.1016/j.chemosphere.2013.03.014

Wurch, L. L., Haley, S. T., Orchard, E. D., Gobler, C. J., & Dyhrman, S. T. (2011). Nutrient-regulated transcriptional responses in the brown tide-forming alga Aureococcus anophagefferens. Environmental Microbiology, 13, 468-481.

Xie, Y. H., Wen, M. Z., Yu, D., & Li, Y. K. (2004). Growth and resource allocation of water hyacinth as affected by gradually increasing nutrient concentrations. Aquatic Botany, 79, 257-266.

Ye, J., Fang, L., Zheng, H., Zhang, Y., Chen, J., Zhang, Z., Wang, J., Li, S., Li, R., Bolund, L., & Wang, J. (2006). WEGO: a web tool for plotting GO annotations. Nucleic Acids Research, 34, W293-7.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2014 Revista de Biología Tropical

Downloads

Download data is not yet available.