Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Anatomy of the vegetative organs of two species of Atriplex (Chenopodiaceae), growing in Venezuela
PDF (Español (España))
HTML (Español (España))

Keywords

anatomy
Atriplex
halophyte species
leaf
stem
root
anatomía
Atriplex
especies halófitas
hoja
tallo
raíz

How to Cite

Jáuregui, D., Castro, M., Ruíz-Zapata, T., & Lapp, M. (2014). Anatomy of the vegetative organs of two species of Atriplex (Chenopodiaceae), growing in Venezuela. Revista De Biología Tropical, 62(4), 1625–1636. https://doi.org/10.15517/rbt.v62i4.13420

Abstract

In Venezuela, Atriplex is represented by A. cristata and A. oestophora, the latter being endemic; they inhabit coastal areas with high temperatures, high solar radiation and sandy soils with high salt content. This work aimed to provide information to facilitate and clarify these species taxonomic delimitation, throughout the study of the anatomy of their vegetative organs; this may also clarify our understanding of their adaptability to soil and climatic conditions prevailing in areas they inhabit. The plant material was collected from at least three individuals of each species in Punta Taima Taima and Capatárida, Falcon. Segments of roots, located near the neck and towards the apex, apical, middle and basal internodes of stems, were taken; and of leaves, located in the middle portion of plants. This material was fixed in FAA (formaldehyde, acetic acid, 70% ethanol) until processing. Semipermanent and permanent microscope slides were prepared with transverse or longitudinal sections, made using a razor (free-hand) or a rotation microtome, in this latter case, after paraffin embedding; besides, additional plates were mounted with portions of leaf epidermis, obtained by the maceration technique. The sections were stained with aqueous toluidine blue (1%) or safranin-fast-green, and mounted in water-glycerin or in Canada balsam. In order to calculate the vulnerability index, the vessel diameter in the vascular rings of roots, as well as their density, were quantified. Our results revealed structural features in the different organs, that resulted of taxonomic value and allowed the distinction of the species: in the leaf, the presence of aquifer tissue, the number of vascular bundles and their organization in the midrib, and the collenchyma differentiation in this part of the leaf; in the roots, the xylem and phloem arrangement in the growth rings, the nature of conjunctive tissue, and the presence of included phloem in one species. In addition, the species showed typical anatomical features of halophytes and xerophytes, such as: high density of trichomes on leaves and young stems which act as salt secreting glands, abundant sclerenchyma in stems and roots, water storage tissue and Kranz anatomy in leaves, narrow cortical region in young roots, presence of cambial variants in stems and roots, as well as short and narrow xylem vessels. Vulnerability index calculations indicated that both species tend to assure conduction but not the efficiency of the system. Atriplex species have anatomical characters which facilitate their adaptation to the special conditions prevailing in their habitats and that may be used for taxonomic delimitation.

https://doi.org/10.15517/rbt.v62i4.13420
PDF (Español (España))
HTML (Español (España))

References

Bercu, R. & Bavaru, E. (2004). Anatomical aspects of Salsola kali subsp. ruthenica

(Chenopodiaceae). Phytologia Balcanica, 10(2-3), 227-232.

Carlquist, S. (1977). Ecological factors in wood evolution, a floristic approach. American Journal of Botany, 64(7), 887-896.

Carlquist, S. (2007). Successive cambia revisited: ontogeny, histology, diversity, and functional significance. Journal of the Torrey Botanical Society, 134(2), 301-332.

Carolin, R., Jacobs, S., & Vesk, M. (1975). Leaf structure in Chenopodiaceae. Botanische Jahrbücher für Systematik, 95(2), 226-255.

Cuénoud, P., Savolainen, V., Chatrou, L. W., Powell, M. Grayer, R. J., & Chase M. W. (2002). Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. American Journal of Botany, 89(1), 132-144.

D’Ambrogio, A., Fernández, S., González, E., Furlan, I., & Frayssinet, N. (2000). Estudios morfoanatómicos y citológicos en Atriplex sagittifolia (Chenopodiaceae). Boletin Sociedad Argentina de Botánica, 35(3-4), 215-226.

Enríquez, E., Parra, M. A., & Ramírez, F. (2011). Producción y valor nutritivo de forraje de Atriplex en un suelo salino. Revista Biotecnia, 13(2), 29-34.

Fahn, A. & Cutler, D. (1992). Xerophytes. Encyclopedia of plant anatomy. Berlin, Alemania: Gebruder, Borntraeger.

Flores, H. (1992). Taxonomía del grupo Atriplex pentandra (Chenopodiaceae). Anales del Instituto de Biología de la Universidad Autónoma de Mexico, Serie Botánica, 63(2), 155-194.

Frayssinet, N., González, E., D´Ambrogio, A., Fernández, S., & Furlan, I. (2007). Estudio citológico, exo y endomorfológico en Atriplex lampa (Moq.) D. Dietr. (Chenopodiaceae). Polibotanica, 24, 1-23.

Grigore, M. N. & Toma, C. (2007). Histo-anatomical strategies of Chenopodiaceae halophytes: adaptive, ecological and evolutionary implications. Wseas Transactions on Biology and Biomedicine, 4(12), 207-218.

Heklau, H., Gasson, P., Schweingruber, F., & Baas, P. (2012). Wood anatomy of Chenopodiaceae (Amaranthaceae s.l.). International Association of Wood Anatomists Journal, 33(2), 205-232.

Hokche, O., Berry, P., & Huber, O. (2008). Nuevo catálogo de la flora vascular de Venezuela. Venezuela: Fundación Instituto Botánico de Venezuela.

Howard, R. (1973). The enumeratio and selectarum of Nicolaus von Jacquin. Journal Arnold Arboretum, 54(4), 435-470.

Johansen, D. A. (1940). Plant microtechnique. New York, USA: McGraw Hill.

Kadereit, G., Borsch, T., Weising K., & Freitag, H. (2003). Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. International Journal of Plant Science, 164, 959-986.

Kadereit, G., Mavrodiev, E. V., Zacharias, E. H., & Sukhorukov, A. P. (2010). Molecular phylogeny of atripliceae (Chenopodioideae, Chenopodiaceae): implications for systematics, biogeography, flower and fruit evolution, and the origin of C4 photosynthesis. American Journal of Botany, 97(10), 1664-1687.

Krauss, E. & Arduin, M. (1997). Manual básico de métodos en morfología vegetal. Argentina: EDUR, Seropédica.

McArthur, E. D. & Sanderson, S. C. (1983). Distribution, systematics, and evolution of Chenopodiaceae an overview. In A. R. Tiedemann, E. D. Arthur, H. C. Stutz, R. Stevens, & K. L. Johnson (Eds.), Proceedings Symposium on the Biology of Atriplex and related Chenopods (pp. 14-24). Provo, Utah, Estados Unidos.

Medina, E., Francisco, A., Wingfield, R., & Casañas, O. (2008). Halofitismo en plantas de la costa Caribe de Venezuela. Acta Botánica Venezuelica, 31(1), 49-80.

Metcalfe, C. R. & Chalk, L. (1950). Anatomy of Dicotyledons. Oxford, Reino Unido: Clarendon Press.

Mozafar, A. & Goodin, J. R. (1970). Vesiculated hairs: A mechanism for salt tolerance in Atriplex halimus L. Plant Physiology, 45, 62-65.

Muhaidat, R., Sage, R., & Dengler, N. (2007). Diversity of kranz anatomy and biochemistry Int. J. Agri. Biol. in C4 eudicots. American Journal of Botany, 94(3), 362-381.

Mulas, M. & Mulas, G. (2004). The strategic use of Atriplex and Opuntia to combat desertification. Sassari, Italia: Desertification Research Group, University of Sassari.

Müller, K. & Borsch, T. (2005). Phylogenetics of Amaranthaceae based on matK/trnK sequence data - Evidence from parsimony, likelihood, and Bayesian analyses. Annals of Missouri Botanical Garden, 92(1), 66-102.

Pérez, V. & Hermann, P. (2009). Comparación anatómica de Nitrophila australis var. australis y Nitrophila occidentalis (Chenopodiaceae). Su importancia taxonómica. Boletín Sociedad Argentina de Botánica, 44(3-4), 329-342.

Poblete, V., Campos, V., González, L., & Montenegro, G. (1991). Anatomical leaf adaptations in vascular plants of a salt marsh in the Atacama Desert (Chile). Revista Chilena de Historia Natural, 64, 65-75.

Robert, E., Schmitz, N., Boren, I., Driessens, T., Herremans, K., Mey, J. de, Casteele, E. van de, Beckman, H., & Koedam, N. (2011). Succesive cambia: a developmental oddity or an adaptative structure? PLoS one, 6(1) e16558.

Roth, I. (1992). Leaf structure: coastal vegetation and mangroves of Venezuela. Berlín, Alemania: Gebr. Borntraeger.

Ruiz-Zapata, T., Castro, M., & Wingfield, R. (2013, junio). El género Atriplex L. (Amaranthaceae) en Venezuela. Póster presentado al IV Congreso Venezolano de Diversidad Biológica, Falcón, Venezuela.

Smaoui, A., Barhoumi, Z., Rabhi, M., & Abdelly, C. (2011). Localization of potential ion transport pathways in vesicular trichome cells of Atriplex halimus L. Protoplasma, 248, 363-372.

Sayed-Hussin, S. A. E. (2007). Mechanisms of salt tolerance in the halophytes Atriplex nummularia Lindl. and Atriplex leucoclada Boiss. (Doctoral thesis). Gottfried Wilhelm Leibniz Universität Hannover, Niedersachsen, Germany.

Troughton, J. & Card, K. A. (1974). Leaf anatomy of Atriplex buchananii. New Zealand Journal of Botany, 12(2), 167-177.

Wahid, A. (2003). Physiological significance of morpho-anatomical features of halophytes with particular reference to Cholistan Flora. International Journal of Agriculture and Biology, 5(2), 207-212.

Wang, L., Showalter, A., & Ungar, I. (1997). Effect of salinity on growth, ion content, and cell wall chemistry in Atriplex prostrata (Chenopodiaceae). American Journal of Botany, 84(9), 1247-1255.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2014 Revista de Biología Tropical

Downloads

Download data is not yet available.