Abstract
The toxicity induced by insecticides in aquatic organisms is of utmost relevance because it may give a clue about the degree of health or damage of the involved ecosystem. In the present report, we determined the effect of dieldrin (DD) and chlorpyrifos (CP) on the freshwater crayfish, Cambarellus montezumae. The organisms (4-6cm in diameter) were collected in the Ignacio Ramírez Reservoir, situated at 50km Northeast of Mexico City, in the Rio Lerma Basin. Initially, we determined the LC50 value with the Probit method, then the DNA damage with single cell gel electrophoresis (comet assay applied at 24, 48, and 72h of exposure) applied to the brain and hepatopancreas of animals exposed (in reconstituted water) to 0.05 and 0.5mg/L of each insecticide. In the hepatopancreas of the same organisms, we determined the lipid peroxidation by applying the TBARS test. DNA damage and lipid peroxidation were also evaluated with the same methods to organisms exposed in water from the reservoir. In regard to the LC50, at 72h of exposure, we found a value of 5.1mg/L and a value of 55.62mg/L for DD and CP, respectively. The comet assay applied at different exposure times showed significant DNA damage to both organs, with respect to the control level. In the case of DD, statistical significance was observed for the two doses in the whole evaluated schedule. CP was genotoxic in the brain with the high dose at 72h, and in the hepatopancreas with the two tested doses at all evaluated exposure times. Also, a significant lipid peroxidation increase was detected with the two doses of insecticides. In the study with water from the reservoir, a more pronounced DNA damage was detected. Our results showed strong DNA damage induced by both insecticides in the crayfish, as well as a correlation with the lipid peroxidation effect, suggesting that oxidative stress is involved in the genotoxic alteration. Our results also showed the usefulness of the studied organism as well as the applied tests for the evaluation of toxicological effects, and suggested the pertinence of applying the comet assay to other freshwater organisms to evaluate the bioaccumulation of insecticides.
1,3Sandra Díaz-Barriga, 2Laura Martínez-Tabche, 3Isela Álvarez-González, 3Eduardo Madrigal-Bujaidar*, 4Eugenia López-López.
1Laboratorio de Genética, Facultad de Estudios Superiores Cuautitlán. UNAM.
2Laboratorio de Toxicología Acuática, Escuela Nacional de Ciencias Biológicas, IPN.
3Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas IPN.
4Departamento de Zoología, Escuela Nacional de Ciencias Biológicas IPN.
México
References
Alcorlo, P., Otero, M., Crehuet, M., Baltanás, A., & Montes, C. (2006). The use of the red swamp crayfish (Procambarus clarkii, Girard) as indicator of the bioavailability of heavy metals in environmental monitoring in the River Guadiamar (SW, Spain). The Science of the Total Environment, 366, 380-390.
Ali, D., Nagpure, N. S., Kumar, S., Kumar, R., Kushwaha, B., & Lakra, W. S. (2009). Assesssment of genotoxic and mutagenic effects of chlorpyrifos in freshwater fish Channa punctatus (Bloch) using micronucleus assay and alkaline-single cell gel electrophoresis. Food and Chemical Toxicology, 47, 650-656.
Antón, A., Serrano, T., Angulo, E., Ferrero, G., & Rallo, A. (2000). The use of two species of crayfish as environmental sentinels: the relationship between heavy metal content, cell and tissue biomarkers and physic-chemical characteristics of the environment. The Science of the Total Environment, 247, 239-251.
Azqueta, A., Arbillaga, L., López de Cerain, A., & Collins, A. (2013). Enhancing the sensitivity of the comet assay as a genotoxicity test, by combining it with bacterial repair enzyme FPG. Mutagenesis, 28, 271-277.
Bachowski, S., Xu, Y., Stevenson, D. E., Walborg, E. F. Jr., & Klaunig, J. E. (1998). Role of oxidative stress in the selective toxicity of dieldrin in the mouse liver. Toxicology and Applied Pharmacology, 150, 301-309.
Bagchi, D., Bagchi, M., Hassoun, E. A., & Stohs, S. J. (1995). In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology, 104, 129-140.
Barbee, G. C., & Stout, M. J. (2009). Comparative acute toxicity of neonicotinoid and pyrethroid insecticides to non-target crayfish (Procambarus clarkii) associated with rice-crayfish crop rotations. Pest Management Science, 65, 1250-1256.
Barbee, G. C., McClain, W. R., Lanka, S. K., & Stout, M. J. (2010). Acute toxicity of chrorantraniliprole to non-target crayfish (Procambarus clatkii) associated with rice-crayfish cropping systems. Pest Management Science, 66, 996-1001.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microorganism quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72, 248-254.
Chimeddorj, T., Suzuki, T., Murakane, K., Inai, M., Satoh, M., & Oyama, Y. (2013). Synergistic increase in cell lethality by dieldrin and H2O2 in rat thymocytes: effect of dieldrin on the cells exposed to oxidative stress. Chemosphere, 93, 353-358.
Cicchetti, R., Bari, M., & Argentin, G. (1999). Induction of micronuclei in bone marrow by two pesticides and their differentiation with CREST staining: an in vivo study in mice. Mutation Research, 439, 239-248.
Clements, C., Ralph S., & Petras, M. (1997). Genotoxicity of select herbicides in Rana catesbeiana tadpoles using the alkaline single-cell gel DNA electrophoresis (comet) assay. Environmental and Molecular Mutagenesis, 29, 277-288.
Cooper, J., & Dobson, H. (2007). The benefits of pesticides to mankind and the environment. Crop Protection, 26, 1337-1348.
Cotelle, S., & Férard, J. F. (1999). Comet assay in genetic ecotoxicology: A review. Environmental and Molecular Mutagenesis, 34, 246-255.
Eaton, D. L., Daroff, R. B., Autrup, H., Bridges, J., Buffler, P., Costa, L. G., Coyle, J., McKhann, G., Mobley, W. C., Nadel, L., Neubert, D., Schulte-Hermann, R., & Spencer, P. S. (2008). Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Critical Reviews in Toxicology, 38, 1-125.
Environmental Protection Agency. (1991). Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. EPA-600/4-90-027. Retrieved from http://nepis.epa.gov/Adobe/PDF/200096OT.PDF
Favari, L., López, E., Martinez-Tabche, L., & Díaz-Pardo, E. (2002). Effect of insecticides on plankton and fish of Ignacio Ramírez reservoir (Mexico): a biochemical and biomagnification study. Ecotoxicology and Environmental Safety, 51, 177-186.
Galar, M. M., Martínez-Tabche, L., Sánchez-Hidalgo, E., & López, E. (2006). Effect of zinc-enriched sediments, in open and isolatyed systems, on three species of benthonic invertebrates. Revista de Biología Tropical, 54, 451-460.
Galindo Reyes, J. G., Leyva, N. R., Millan, O. A., & Lazcano, G. A. (2002). Effects of pesticides on DNA and protein of shrimp larvae Litopenaeus stylirostris of the California Gulf. Ecotoxicology and Environmental Safety, 53, 191-195.
García-Medina, S., Razo-Estrada, C., Galar-Martinez, M., Cortéz-Barberena, E., Gómez-Oliván, L. M., Alvarez-González, I., & Madrigal-Bujaidar, E. (2011). Genotoxic and cytotoxic effects induced by aluminum in the lymphocytes of the common carp (Cyprinus carpio). Comparative Biochemistry and Physiology. Part C: Toxicology & Pharmacology, 153, 113-118.
Gebremariam, S. Y., Beutel, M. W., Yonge, D. R., Flury, M., & Harsh, J. B. (2012). Adsortion and desortion of chlorpyrifos to soils and sediments. Review of Environmental Contamination and Toxicology, 215, 123-175.
Goktepe, I., Portier, R., & Ahmedna, M. (2004). Ecological risk assessment of neem-based pesticides. Journal of Environmental Science and Health. Part B, Pesticides, Food contaminants, and Agricultural, 39, 311-320.
Gollapudi, B. B., Mendrala, A. L., & Linscombe, V. A. (1995). Evaluation of the genetic toxicity of the organophosphate insecticide chlorpyrifos. Mutation Research, 342, 25-36.
Gupta, S. C., Mishra, M., Sharma, A., Deepak Balaji, T. G., Kumar, R., Mishra, R. K., & Chowdhuri, D. K. (2010). Chlorpyrifos induces apoptosis and DNA damage in Drosophila through generation of reactive oxygen species. Ecotoxicology and Environmental Safety, 73, 1415-1423.
Hanson, P., Springer, M., & Ramírez, A. (2010). Introducción a los grupos de macroinvertebrados acuáticos. Revista de Biología Tropical, 58, 3-37.
Hatcher, J. M., Richardson, J. R., Guillot, T. S., McCormack, A. L., Di Monte, D. A., Jones, D. P., Pennell, K. D., & Miller, G. W. (2007). Dieldrin exposure induces oxidative damage in the mouse nigrostriatal dopamine system. Experimental Neurology, 204, 619-630.
Hoang, T. C., Pryor, R. L., Rand, G. M., & Frakes, R. A. (2011). Use of butterflies as nontarget insect test species and the acute toxicity and hazard of mosquito control insecticides. Environmental Toxicology and Chemistry, 30, 997-1005.
Holmqvist, N., Stenroth, P., Berglund, O., Nyström, P., Graneli, W., & Larsson, P. (2007). Persistent organic pollutants (POP) in a benthic omnivore-a comparison between lake and stream crayfish populations. Chemosphere, 66, 1070-1078.
Hoving, E. B., Laing, C., Rutgers, H. M., Teggeler, M., van Doormaal, J. J., & Muskiet, F. A. (1992). Optimized determination of malondialdehyde in plasma lipid extracts using 1,3-diethyl-2-thiobarbituric acid: influence of detection method and relation with lipids and fatty acids in plasma from healthy adults. Clinica Chimica Acta, 208, 63-76.
Jarboe, H. H., & Romaire, R. P. (1991). Acute toxicity of permethrin to four size classes of red swamp crayfish (Procambarus clarkia) and observations of post-exposure effects. Archives of Environmental Contamination and Toxicology, 20, 337-342.
Jorgenson, J. L. (2001). Aldrin and dieldrin: a review of research on their production, environmental deposition and fate, bioaccumulation, toxicology, and epidemiology in the United States. Environmental Health Perspectives, 109, 113-139.
Klobučar, G. I., Malev, O., Šrut, M., Štambuk, A., Lorenzon, S., Cvetkovič, Ž., Ferrero, E. A., & Maguire, I. (2012). Genotoxicity monitoring of freshwater environments using caged crayfish (Astacus leptodactylus). Chemosphere, 87, 62-67.
Landrigan, P. J. (2010). What causes autism? Exploring the environmental contribution. Current Opinion in Pediatrics, 22, 219-225.
Lee, S. H., Ra, J. S., Choi, J. W., Yim, B. J., Jung, M. S., & Kim, S. D. (2014). Human health risks associated with dietary exposure to persistent organic pollutants (POPs) in river water in Korea. The Science of the Total Environment, 470-471, 1362-1369.
Madrigal-Santillán, E., Morales-González, J. A., Sánchez-Gutiérrez, M., Reyes-Arellano, A., & Madrigal-Bujaidar, E. (2009). Investigation on the protective effect of α-mannan against the DNA damage induced by aflatoxin B1 in mouse hepatocytes. International Journal of Molecular Science, 10, 395-406.
Malev, O., Srut, M., Maguire, I., Stambuk, A., Ferrero, E. A., Lorenzon, S., & Klobucar, G. I. (2010). Genotoxic, physiological and immunological effects caused by temperature increase, air exposure or food deprivation in freshwater crayfish Astacus leptodactylus. Comparative Biochemistry and Physiology. Part C: Toxicology & Pharmacology, 152, 433-443.
Marnett, L. J. (2002). Oxy radicals, lipid peroxidation and DNA damage. Toxicology, 181-182, 219-222.
Martyniuk, C. J., Feswick, A., Spade, D. J., Kroll, K. J., Barber, D. S., & Denslow, N. D. (2010). Effects of acute dieldrin exposure on neurotransmitters and global gene transcription in largemouth bass (Micropterus salmoides) hypothalamus. Neurotoxicology, 31, 356-366.
Matsumoto, E., Kawanaka, Y., Yun, S. J., & Oyaizu, H. (2009). Bioremediation of the organochlorine pesticides, dieldrin, and endrin, and their occurrence in the environment. Applied Microbiology and Biotechnology, 84, 205-216.
Mrema, E. J., Rubino, F. M., Brambilla, G., Moretto, A., Tsatsakis, A. M., & Colosio C. (2013). Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology, 307, 74-88.
Murray, T. J., Lea, R. G., Abramovich, D. R., Haites, N. E., & Fowler, P. A. (2001). Endocrine disrupting chemicals: effects on human male reproductive health. Early Pregnancy, 5, 80-112.
Narra, M. R. (2014). Tissue-Specific recovery of oxidative and antioxidant effects of chlorpyrifos in the freshwater crab, Batytelphusa guerini. Archives of Environmental Contamination Toxicology, 67, 158-166.
Ozkan, F., Gündüz, S. G., Berköz, M., Hunt, A. O., & Yalin, S. (2012). The protective role of ascorbic acid (vitamin C) against chlorpyrifos-induced oxidative stress in Oreochromis niloticus. Fish Physiology and Biochemistry, 38, 635-643.
Palma, P., Palma, V. L., Fernandes, R. M., Soares, A. M., & Barbosa, I. R. (2008). Acute toxicity of atrazine, endosulfan sulphate and chrorpyrifos to Vibrio fischeri, Thamnocephalus platyurus, and Daphnia magna, relative to their concentrations in surface waters from the Alentejo region of Portugal. Bulletin of Environmental Contamination and Toxicology, 81, 485-489.
Pandey, R. M. (2008). Cytotoxic effects of pesticides in somatic cells of Vicia faba L. Cytology and Genetics, 42, 373-377.
Park, S. Y., & Choi, J. (2009). Genotoxic effects of nonylphenol and bisphenol A exposure in aquatic biomonitoring species: freshwater crustacean, Daphnia magna, and aquatic midge, Chironomus riparius. Bulletin of Environmental Contamination and Toxicology, 83, 463-468.
Pereira, J. L., Antunes, S. C., Castro, B. B., Marques, C. R., Gonçalves, A. M., Gonçalves, F., & Pereira, R. (2009). Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: commercial formulation versus active ingredient. Ecotoxicology, 18, 455-463.
Perobelli, J. E., Martinez, M. F., da Silva Franchi, C. A., Fernandez, C. D., de Camargo, J. L., & Kempinas, W. G. (2010). Decreased sperm motility in rats orally exposed to single or mixed pesticides. Journal of Toxicology and Environmental Health, 73, 991-1002.
Pierce, R. H., Henry, M. S., Blum, T. C., & Mueller, E. M. (2005). Aerial and tidal transport of mosquito control pesticides into the Florida Keys National Marine Sanctuary. Revista de Biología Tropical, 53, 117-125.
Pizzimenti, S., Ciamporcero, E., Daga, M., Pettazzoni, P., Arcaro, A., Cetrangolo, G., Minelli, R., Dianzani, C., Lepore, A., Gentile, F., & Barrera, G. (2013). Interaction of aldehydes derived from lipid peroxidation and membrane proteins. Frontiers in Physiology, 4, 242.
Qiao, D., Seidler, F. J., & Slotkin, T. A. (2005). Oxidative mechanisms contributing to the developmental neurotoxicity of nicotine and chlorpyrifos. Toxicology and Applied Pharmacoogy, 206, 17-26.
Rahman, M. F., Mahboob, M., Danadevi, K., Saleha, B. B., & Groover, P. (2002). Assessment of genotoxic effects of chorpyriphos and acephate by the comet assay in mice leucocytes. Mutation Research, 516, 139-147.
Satyanarayan, S., Ramakant, R., & Satyanarayan, A. (2005). Bioaccumulation studies of organochlorinated pesticides in tissues of Ciprinus carpio. Journal of Environmental Science and Health. Part B. Pesticides, Food contaminants, and Agricultural Wastes, 40, 397-412.
Sava, V., Velasquez, A., Song, S., & Sanchez-Ramos, J. (2007). Dieldrin elicits a widespread DNA repair and antioxidative response in mouse brain. Journal of Biochemical and Molecular Toxicology, 21, 125-135.
Scheiler, J. J., & Peterson, R. K. (2010). Toxicity and risk of permethrin and naled to non-target insects after adult mosquito management. Ecotoxicology, 19, 1140-1146.
Slotkin, T. A., & Seidler, F. J. (2010). Oxidative stress from diverse developmental neurotoxicants: antioxidants protect against lipid peroxidation without preventing cell loss. Neurotoxicology and Teratology, 32, 124-131.
Swaen, G. M., de Jong, G., Slangen, J. J., & van Amelsvoort, L. G. (2002). Cancer mortality in workers exposed to dieldrin and aldrin: an update. Toxicology and Industrial Health, 18, 63-70.
Takabe, Y., Tsuno, H., Nishimura, F., Tanji, N., Maruno, H., Tsurukawa, M., Suzuki, M., & Matsumura, C. (2012). Bioaccumulation and primary risk assessment of persistent organic pollutants with various bivalves. Water Science and Technology, 66, 2620-2629.
Tice, R. R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., Miyamae, Y., Rojas, E., Ryu, J. C., & Sasaki, Y. F. (2000). Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environmental and Molecular Mutagenesis, 35, 206-221.
Tsai, W. T. (2010). Current status and regulatory aspects of pesticides considered to be persistent organic pollutants (POPs) in Taiwan. International Journal of Environmental Research and Public Health, 7, 3615-3627.
Varó, I., Serrano, R., Pitarch, E., Amat, F., López, F. J., & Navarro, J. C. (2002). Bioaccumulation of chlorpyrifos through an experimental food chain: study of protein HSP70 as biomarker of sublethal stress in fish. Archives of Environmental Contamination and Toxicology, 42, 229-235.
Vasquez, M. I., & Fatta-Kassinos, D. (2013). Is the evaluation of “traditional” physicochemical parameters sufficient to explain the potential toxicity of the treated wastewater at sewage treatment plants? Environmental Science and Pollutution Research International, 20, 3516-3528.
Vasquez, M. Z. (2010). Combining the in vivo comet and micronucleus assays: a practical approach to genotoxicity testing and data interpretation. Mutagenesis, 25, 187-199.
Verma, R. S., & Srivastava, N. (2003). Effect of chlorpyrifos on thiobarbituric acid reactive substances, scavenging enzymes and glutathione in rat tissues. Indian Journal of Biochemical and Biophysics, 40, 423-428.
Voulgaridou, G. P., Anestopoulos, I., Franco, R., Panayiotidis, M. I., & Pappa, A. (2011). DNA damage induced by endogenous aldehydes: current state of knowledge. Mutation Research, 711, 13-27.
Yin, X., Zhu, G., Li, X. B., & Liu, S. (2009). Genotoxicity evaluation of chlorpyrifos to amphibian Chinese toad (Amphibian: Anura) by comet assay and micronucleus test. Mutation Research, 680, 2-6.
##plugins.facebook.comentarios##
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2015 Revista de Biología Tropical