Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Trophic interactions within the microbial food web in a tropical floodplain lake (Laguna Bufeos, Bolivia)
PDF

Keywords

bacterioplankton
microzooplankton
grazing
nutrient
recycling
tropical lake
bacterioplancton
microzooplancton
ramoneo
consumo
nutriente
reciclaje
lago tropical

How to Cite

Rejas, D., Muylaert, K., & De Meester, L. (2005). Trophic interactions within the microbial food web in a tropical floodplain lake (Laguna Bufeos, Bolivia). Revista De Biología Tropical, 53(1-2), 85–96. https://doi.org/10.15517/rbt.v53i1-2.14370

Abstract

Whether the primary role of bacterioplankton is to act as “remineralizers” of nutrients or as direct nutritional source for higher trophic levels will depend on factors controlling their production and abundance. In tropical lakes, low nutrient concentration is probably the main factor limiting bacterial growth, while grazing by microzooplankton is generally assumed to be the main loss factor for bacteria. Bottom-up and top-down regulation of microbial abundance was studied in six nutrient limitation and dilution gradient-size fractionation in situ experiments. Bacteria, heterotrophic nanoflagellates (HNF), ciliates and rotifers showed relatively low densities. Predation losses of HNF and ciliates accounted for a major part of their daily production, suggesting a top-down regulation of protistan populations by rotifers. Phosphorus was found to be strongly limiting for bacterial growth, whereas no response to enrichment with Nitrogen or DOC was detected. HNF were the major grazers on bacteria (g=0.43 d-1), the grazing coefficient increased when ciliates were added (g= 0.80 d-1) but decreased when rotifers were added (g= 0.23 d-1) probably due to nutrient recycling or top-down control of HNF and ciliates by rotifers.
https://doi.org/10.15517/rbt.v53i1-2.14370
PDF

References

Anesio, A.M., P.C. Abreu & F.D. Esteves. 1997. Influence of the hydrological cycle on the bacterioplankton of an impacted clear water Amazonian lake. Microb. Ecol. 34: 66-73.

Arndt, H. 1993. Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates) - a review. Hydrobiologia 255/256: 231-246.

Currie, D.J. 1990. Large-scale variability and interactions among phytoplankton, bacterioplankton and phosphorus. Limnol. Oceanogr. 35: 1437-1455.

Elser, J.J., L.B. Stabler & R.P. Hassett. 1995. Nutrient limitation of bacterial growth and rates of bacterivory in lakes and oceans: a comparative study. Aquat. Microb. Ecol. 9: 105-110.

Erikson, R., K. Vammen, A. Zelaya & R.T. Bell. 1998. Distribution and dynamics of bacterioplankton productionin a polymictic tropical lake (Lago Xolotlan, Nicaragua). Hydrobiologia 382: 27-39.

Fagerbakke, K.M., M. Heldal & S. Norland. 1996. Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria. Aquat. Microb. Ecol. 10: 15-27.

Fenchel, T., G.M. King & T.H. Blackburn. 1998. Bacterial biogeochemistry: the ecophysiology of mineral cycling. Academic, San Diego, California.

Gasol, J., A. Simons & J. Kalff. 1995. Patterns in the topdown versus bottom-up regulation of heterotrophic nanoflagellates in temperate lakes. J. Plankton Res. 17: 1879-1903.

Gifford, D.J. 1988. Impact of grazing by microzooplankton in the northwest arm of Halifax Harbour, Nova Scotia. Mar. Ecol. Prog. Ser. 47: 249-258.

Gilbert, J.J. & J.D. Jack. 1993. Rotifers as predators on small ciliates. Hydrobiologia 255: 247 253.

Jiménez-Gómez, F., V. Rodríguez & B. Bautista. 1994. Trophic interactions in the microbial food web at a coastal station in the Alboran Sea (Western Mediterranean) in winter. (II). Size selective flagellate feeding on bacteria and its implication on the microbial loop size-structure. Sci. Mar. 58: 153-159.

Jürgens, K. & G. Stolpe. 1995. Seasonal dynamics of crustacean zooplankton, heterotrophic nanoflagellates and bacteria in a shallow, eutrophic lake. Freshwater Biol. 33: 27-38.

Landry, M.R. & R.P. Hassett. 1982. Estimating the grazing impact of marine microzooplankton. Mar. Biol. 67: 283-288.

Landry, M.R. 1993. Estimating rates of growth and grazing mortality of phytoplankton by the dilution method. p. 715-722. In P.F. Kemp, B.F. Sherr, E.B. Sherr & J.J. Cole (eds.). Handbook of methods in aquatic microbial ecology. Lewis, Boca Ratón, Florida.

Letarte, Y. & B. Pinel-Alloul. 1991. Relationships between bacterioplankton production and limnological variables: Necessity of bacterial size considerations. Limnol Oceanogr. 36: 1208-1216.

Maldonado, M., E. Goitia, F. Acosta, M. Cadima & D. Castellón. 1996. Caracterización limnológica de lagunas en la llanura aluvial del Río Ichilo, Cochabamba (Bolivia). Rev. Bol. Ecol. 1: 29-37.

Neill, W.E. 1994. Spatial and temporal scaling and organization of limnetic communities. In P.S. Guiller, A.G. Hildrew & D.G. Raffaelli (eds.). Aquatic ecology: scale, patterns and process. Blackwell Scientific, Oxford, New York.

Pace, M.L., J.J. Cole & S.R. Carpenter. 1998. Trophic cascades and compensation: differential responses of microzooplankton in whole-lake experiments. Ecology 79: 138-152.

Pomeroy, L.R. & W.J. Wiebe. 1988. Energetics of microbial food webs. Hydrobiologia 159: 7-18.

Pouilly, M, M. Gutierrez & T. Yunoki. 1999. Funcionamiento ecológico de las lagunas de la zona de inundación del río Mamoré (Beni-Bolivia). Rev. Bol. Ecol. 6: 41-54.

Rai, H. & G. Hill. 1984a. Microbiology of Amazonian waters. p. 413-442. In H. Sioli (ed.) Amazon, limnology and landscape ecology of a mighty tropical river and its basin. Dr. W. Junk, The Hague, The Netherlands.

Rai, H. & G. Hill. 1984b. Primary production in the Amazonian aquatic ecosystem. p. 311-336. In H. Sioli (ed.). Amazon, limnology and landscape ecology of a mighty tropical river and its basin. Dr. W. Junk, The Hague, The Netherlands.

Robertson B. & E. Hardy. 1984. Zooplankton of Amazonian lakes and rivers. p. 337-352. In H. Sioli (ed.).Amazon, limnology and landscape ecology of a mighty tropical river and its basin. Dr. W. Junk, The Hague, The Netherlands.

Sanders R.W., K.G. Porter, S.J. Bennet & A.E. DeBiase. 1989. Seasonal patterns of bacterivory by flagellates, ciliates, rotifers and cladocerans in a freshwater planktonic community. Limnol. Oceanogr. 34: 673-687.

Sanders, R.W., D.A. Caron & U.G. Berninger. 1992. Relationships between bacteria and heterotrophic nanoplankton in marine and freshwaters: an inter-ecosystem comparison. Mar. Ecol. Prog. Ser. 86: 1-14.

Sanders R.W. & S.A. Wickham. 1993. Planktonic protozoa and metazoa: predation, food quality and population control. Mar. Microb. Food Webs. 7: 197-223.

Schmidt G.W. 1969. Vertical distribution of bacteria and algae in a tropical lake. Int. Revue ges Hydrobiol.54: 791-797.

Sherr, B., E. Sherr & G.A. Paffenöfer. 1986. Phagotrophic protozoa as food for metazoans: a “missing” trophic link in marine pelagic food webs. Mar. Microb. Food Webs. 1: 61-80.

Sherr, E. & B. Sherr. 1988. Role of microbes in pelagic food webs: a revised concept. Limnol. Oceanogr. 33: 1225-1227.

Sherr, B., E. Sherr & J. McDaniel. 1992. Effect of protistan grazing on the frequency of dividing cells in bacterioplankton assembages. Applied Environ. Microbiol. 58: 2381-2385.

Sterner, R.W., T.H. Chrzanowski, J.J. Elser & N.B. George. 1995. Sources of nitrogen and phosphorus supporting the growth of bacterio- and phytoplankton in an oligotrophic Canadian Shield lake. Limnol. Oceanogr. 40: 242-249.

Zimmermann, H. 1996. Interactions between planktonic protozoans and metazoans after the spring bloom of phytoplankton in a Eutrophic Lake, the Belauer See, in the Bornhoveder Seenkette, North Germany. Acta Protozool. 35: 215-221.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2005 Revista de Biología Tropical

Downloads

Download data is not yet available.