Abstract
Recent studies have shown that some species of Mimosa (Leguminosae-Mimosoideae) create resource islands (RI), rich in soil organic matter and nutrients, as well as in arbuscular mycorrhyzal fungal (AMF) spores, in the semi-arid Valley of Tehuacán- Cuicatlán. The relevance of this fact is that arid and semi-arid regions are characterized by low fertility soils and scarce precipitation, limiting plant species growth and development; this explains why the presence of AM fungi may be advantageous for mycorrhizal desert plants. Fluctuations in AMF spore numbers could be related to environmental, seasonal and soil factors which affect AMF sporulation, in addition to the life history of the host plant. The aim of this study was to asses the impact of spatial (resource islands vs open areas, OA) and seasonal (wet season vs start of dry season vs dry season) soil heterogeneity in the distribution and abundance of AMF spores in four different study sites within the Valley. We registered AMF spores in the 120 soil samples examined. Significant differences in the number of AMF spores were reported in the soil below the canopy of Mimosa species (RI) comparing with OA (RI > OA), and between Mimosa RI themselves when comparing along a soil gradient within the RI (soil near the trunk > soil below the middle of the canopy > soil in the margin of the canopy > OA); however, there were no significant differences between the soil closest to the trunk vs middle, and margin vs OA. Finally, more spores were reported in the soil collected during the wet season than during the dry season (wet > start of dry > dry). Therefore, the distribution of AMF spores is affected by spatial and seasonal soil heterogeneity. This study points out the relevance of Mimosa RI as AMF spore reservoirs and the potential importance of AM fungi for plant species survivorship and establishment in semi-arid regions. AM fungi have recently been recognized as an important factor determining plant species diversity in arid and temperate ecosystems.References
Allen, M.F. 1991. The ecology of Mycorrhizae. Cambridge University. Nueva York. 184 p.
Allen, E.B. & M.F. Allen. 1986. Water relations of xeric grasses in the field: Interactions of mycorrhizas and competition. New Phytol. 104: 559-571.
Allen, E.B., M.F. Allen, D.J. Helm, J.M. Trappe, R. Molina & E. Rincón. 1995. Patterns and regulation of mycorrhizal plant and fungal diversity. Plant Soil 170: 47-62.
Anderson, R.C., A.E. Liberta & L.A. Dickman. 1984. Interaction of vascular plants and vesicular-arbuscular
mycorrhizal fungi across a soil moisture-nutrient gradient. Oecologia 64: 111-117.
Camargo-Ricalde, S.L. 2002. Dispersal, distribution and establishment of arbuscular mycorrhizal fungi: a review. Bol. Soc. Bot. México 71: 33-44.
Camargo-Ricalde, S.L., S.S. Dhillion & R. Grether. 2002. Community structure of endemic Mimosa species and
environmental heterogeneity in a semi-arid Mexican valley. J. Veg. Sci. 13: 697-704.
Camargo-Ricalde, S.L. & S.S. Dhillion. 2003. Endemic Mimosa species can serve as mycorrhizal “resource islands” within semiarid communities of the Tehuacán- Cuicatlán Valley, Mexico. Mycorrhiza 13: 129-136.
Camargo-Ricalde, S.L., S.S. Dhillion & C. Jiménez- González. 2003. Mycorrhizal perennials of the “matorral xerófilo” and the “selva baja caducifolia” communities in the semiarid Tehuacán-Cuicatlán Valley, Mexico. Mycorrhiza 13: 77-83.
Carrillo-García, A., J.L. León de la Luz, Y. Bashan & G.J. Bethlenfalvay. 1999. Nurse plants, mycorrhizae and
plant establishment in a disturbed area of the Sonoran Desert. Rest. Ecol. 7: 321-335.
Cooke, J.C., R.H. Butler & G. Madole. 1993. Some observations on the vertical distribution of vesicular
myorrhizae in roots of salt marsh grasses growing in saturated soil. Mycologia 85: 574-550.
Dhillion, S.S. & R.C. Anderson. 1993. Seasonal dynamics of dominant species of arbuscular mycorrhizae in
burned and unburned sand prairies. Can. J. Bot. 71: 1625-1630.
Dhillion, S.S., M.A. McGinley, C.F. Friese & J.C. Zak. 1994. Construction of sand shinnery oak communities
of the Llano Estacado: animal disturbances, plant community structure and restoration. Rest. Ecol. 2: 51-60.
Dhillion, S.S. & J.C. Zak.1993. Microbial dynamics in arid ecosystems: desertification and the potential role of
Mycorrhizas. Rev. Chil. Hist. Nat. 66: 253-270.
Dhillion, S.S. 1999. Environmental heterogeneity, animal disturbances, microsite characteristics, and seedling establishment in Quercus havardii community. Rest. Ecol. 7: 399-406.
Garbaye, J. 1991. Biological interactions in the mycorrhizosphere. Experentia 47: 370-375.
Gerdemann, J.W. & T.H. Nicolson. 1963. Spores of mycorrhizal Endogone species extracted from soil by wet
sieving and decanting. Trans. Br. Mycol. Soc. 46: 235-244.
Gibson, A. & B.A.D. Hetrick. 1988. Topographic and fire effects on the composition and abundance of VAMycorrhizal fungi in tallgrass prairie. Mycologia 80: 433-441.
Green, N.E., S.O. Graham & N.C. Schenk. 1976. The influence of pH on the germination of vesicular arbuscular mycorrhizal spores. Mycologia 68: 929-934.
Hartnett, D.C. & T.H. Wilson. 1999. Mycorrhizae influence plant community structure and diversity in tallgrass
prairie. Ecology 80: 1187-1195.
Hayman, D.S. 1982. Influence of soils and fertility on activity and survival of vesicular-arbuscular mycorrhizal fungi. Phytopathology 72: 1119-1125.
Hayman, D.S. & G.E. Stovold. 1979. Spore populations and infectivity of vesicular arbuscular mycorrhizal fungi in New South Wales. Aust. J. Bot. 27: 227-233.
Jacobson, K.M. 1997. Moisture and substrate stability determine VA-mycorrhizal fungal community distribution and structure in arid grasslands. J. Arid Environ. 35: 59-75
Johnson, N.C., D. Tilman & D. Wedin. 1992. Plant and soil controls on mycorrhizal fungal communities. Ecology 73: 2034-2042.
Koide, A.G., M.D. Goff & I.A. Dickie. 2000. Component growth efficiencies of mycorrhizal and nonmycorrhizal plants. New Phytol. 148: 163-168.
Koske, R.E. 1987. Distribution of VA mycorrhizal fungi along a latitudinal temperature gradient. Mycologia
: 55-68.
McGee, P. 1989. Variation in propagule numbers of vesicular- arbuscular mycorrhizal fungi in a semi-arid soil.
Mycol. Res. 92: 28-33.
Miller, S.P. 2000. Arbuscular mycorrhizal colonization of semi-aquatic grasses along a wide hydrologic gradient. New Phytol. 145: 145-155.
Mosse, B. & G.D. Bowen. 1968. The distribution of Endogone spores in some Australian and New Zeland
soils, and in an experimental field soil at Rothamsted. Trans. Br. Mycol. Soc. 51: 485-492.
Moyersoen, B., A.H. Fitter & I.J. Alexander. 1998. Spatial distribution of ectomycorrhizas and arbuscular
mycorrhizas in Korup National Park rain forest, Cameroon, in relation to edaphic parameters. New Phytol. 139: 311-320.
Nadian, H., S.E. Smith, A.M. Alston & R.S. Murray. 1997. Effects of soil compaction on plant growth, phosphorus uptake and morphological characteristics of vesicular-arbuscular mycorrhizal colonization of Trifolium subterraneum. New Phytol. 135: 303-311.
Nadian, H., S.E. Smith, A.M. Alston, R.S. Murray & B.D. Siebert. 1998. Effects of soil compaction on phosphorus uptake and growth of Trifolium subterraneum colonized by four species of vesicual-arbuscular
mycorrhizal fungi. New Phytol. 139: 155-165.
Newsham, K.K., A.R. Watkinson & A.H. Fitter. 1995. Rhizosphere and root infecting fungi and the design
of ecological field experiments. Oecologia 102: 230-237.
Pirozynski, K.A. 1981. Interactions between fungi and plants through the ages. Can. J. Bot. 59: 1824-1827.
Sanders, I.R., J. Clapp & A. Wiemken. 1996. The genetic diversity of arbuscular mycorrhizal fungi in natural
ecosystems –a key to understanding the ecology and functioning of the mycorrhizal symbiosis. New Phytol. 133: 123-134.
Schenk, N.C. & Y. Perez. 1990. Manual of the identification of VA mycorrhizal fungi. Synergistic, Florida. EUA.
Streitwolf-Engel, R., T. Boller, A. Wiemken & I.R. Sanders. 1997. Clonal growth traits of two Prunella species
are determined by co-occurring arbuscular mycorrhizal fungi from a calcareous grassland. J. Ecol. 85: 181-191.
Sylvia, D.M., D.O. Wilson, J.H. Graham, J.J. Madox, P. Millner, J.B. Morton, H.D. Skipper, S.F. Wright & A.G. Jarstfer. 1993. Evaluation of vesicular-arbuscular 352 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 53 (3-4): 339-352, September-December 2005 mycorrhizal fungi in diverse plants and soil. Soil Biol. Biochem. 25: 705-713.
Tarafdar, J.C. & Praveen-Kumar. 1996. The role of vesicular-arbuscular mycorrhizal fungi on crop, tree and grasses grown in an arid environment. J. Arid Environ. 34: 197-203.
Titus, J.H. & R. del Moral. 1998a. Vesicular-arbuscular mycorrhizae influence Mount St. Helens pioneer species in greenhouse experiments. Oikos 81: 495-510.
Titus, J.H. & R. del Moral. 1998b. The role of micorrhizal fungi and microsites in primary succession on Mount
St. Helens. Amer. J. Bot. 85: 370-375.
Turner, S. & C.F. Friese. 1998. Plant-mycorrhizal community dynamics associated with a moisture gradient
with a rehabilitated prairie fen. Rest. Ecol. 6: 44-51.
Van der Heijden, M.G.A., J.N. Klironomos, M. Ursic, P. Moutoglis, R. Streitwolf-Engel, T Boller, A. Wiemken & I.R. Sanders. 1998a. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability, and productivity. Nature 396: 69-72.
Van der Heijden, M.G.A., T. Boller, A. Wiemken & I.R. Sanders. 1998b. Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79: 2082-2091.
Virginia, R.A., M.B. Jenkins & W.M. Jarrel. 1986. Depth of root symbiont ocurrence in soil. Biol. Fert. Soil 2: 127-130.
Whitford, W.G. 1996. The importance of the biodiversity of soil biota in arid ecosystems. Biodivers. Conserv. 5: 185-195.
Wilson, J.M. 1984. Competition for infection between vesicular-arbuscular mycorrhizal fungi. New Phytol. 97: 427-482.
Zak, J.C & S. Visser. 1996. An appraisal of soil fungal biodiversity: the crossroads between taxonomic and functional biodiversity. Biodivers. Conserv. 5: 169-183.
Zavala-Hurtado, J.A. & G. Hernández-Cárdenas. 1998. Estudio de caracterización y diagnóstico del área propuesta como Reserva de la Biósfera Tehuacán-Cuicatlán.Universidad Autónoma Metropolitana-Instituto Nacional de Ecología (INE), SEMARNAP, México.
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2005 Revista de Biología Tropical