Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Actividad de las fosfatasas ácidas y alcalinas (extracelulares e intracelulares) en hongos de la rizosfera de <i>Arachis hypogaea</i> (Papiloneaceae)
PDF (Español (España))

Keywords

arachis hypogaea
acid phosphatase
alkaline phosphatase
extracelular phosphatase
intracelular phosphatase
fungi
rhizosphere

How to Cite

Gómez-Guiñán, Y. (2004). Actividad de las fosfatasas ácidas y alcalinas (extracelulares e intracelulares) en hongos de la rizosfera de <i>Arachis hypogaea</i> (Papiloneaceae). Revista De Biología Tropical, 52(1), 287–295. Retrieved from https://revistas.ucr.ac.cr/index.php/rbt/article/view/14944

Abstract

The potential role of the fungi, isolated from the peanut rhizosphere, in the production of extracellular and intracellular acid and alkaline phosphatase, was evaluated in vitro. Acid and alkaline extracellular phosphatases showed the highest activities, and the Penicillium species were the most efficient in their production. The correlation analysis showed that extracellular acid and intracellular acid phosphatase produced by Aspergillus niger, A. terreus, Penicillium sp. y P. brevicompactum were negatively correlated; while the extracellular and intracellular phosphatase activities, were positively correlated. The extracellular acid phosphatase activities produced in vitro by majority of fungi assayed, were not correlated with the acid phosphatase activity present in the peanut soil rhizosphere. Nevertheless, the extracellular alkaline phosphatase activities produced in vitro, were negatively correlated with the extracellular alkaline phosphatase activities present in the rhizosphere. The ability of phosphatase production by fungi isolated from peanut rhizosphere suggests they have great potential to contribute to the P mineralization in this zone.
PDF (Español (España))

References

Agnihotri, V.P. 1970. Solubilization of insoluble phosphatase by some soil fungi isolated from nursey seedbeds. Can. J. Microbiol. 16: 877-880.

Alexander, M. 1980. Introducción a la microbiología del suelo. Libros y Editoriales. México. 491 p.

Antibius, R.K., R.L. Sinsabugh & A.E. Linkins. 1992.Phosphatase activities and phosphorus uptake from

inositol phosphate by ectomycorrhizal fungi. Can. J. Bot. 70:794-800.

Baligar, V.C., R.J. Wright & M.D. Smedly. 1988. Acid phosphatase activity in soil of the Appalachian region.

Soil Sci. Soc. Amer. J. 52: 1612-1616.

Beever, R.E. & D.J.W. Burns. 1980. Phosphorus uptake, storage and utilization by fungi. Adv. Bot. Res. 8:

-219.

Burns, R.G. 1978. Enzyme activity in soil: Some theoretical and practical considerations, pp. 295-340. In R.G. Burns (ed.). Soil Enzyme. Academic. Nueva York.

Calleja, M., D. Mousain, B. Lecouvreur & J. D’Auzac. 1980. Influence de la carence phosphatée sur les activités phosphatases acides de trois champignons mycorhiziens: Hebeloma edurum Metrod., Suillus granulatus (L. et Fr.) O. Kuntze et Pisolithus tinctorius (pers.) Coker et Couch. Physiol. Veg. 18: 489-504.

Casida, L.E. 1959. Phosphatase activity of some common soil fungi. Soil Sci. 87: 305-310.

Curl, E.A. & B. Truelove. 1986. The rhizosphere. Springer- Verlag. Berlin. 288 p.

Dick ,W.A., N.G. Juma & M.A. Tabatabai. 1983. Effects of soils on acid phosphatase and inorganic pyrophosphatase of corn roots. Soil Sci. 136: 19-25.

Dighton, J. 1983. Phosphatase production by mycorrhizal fungi. Plant Soil. 71: 455-462.

Dighton, J. 1991. Acquisition of nutrients from organic sources by mycorrhizal autotrophics plants. Experientia 47: 362-369.

Dilly, O. & P. Nannipieri. 1998. Intracellular and extracellular enzyme activity in soil with reference to elemental cycling. Z. Pflanzenernahr. Bodenk. 161: 243-248.

Dinkelaker, B. & H. Marschner. 1992. In vivo demostration of acid phosphatase activity in the rhizosphere

of soil-grown plants. Plant Soil 144: 199-205.

Ezawa, T., M. Saito & T. Yoshida. 1995. Comparison of phosphatase localization in the intraradical hyphae of arbuscular mycorrhizal fungi Glomus spp. and Gigaspora spp. Plant Soil 176: 67-63.

Gómez-Guiñán, Y. 1995. Efecto del abono orgánico tierra de filtro (TF) sobre las actividades de las fosfatasas y la disponibilidad del fósforo en la rizosfera del maní (Arachis hypogaea L.) cultivado en suelo ácido. Trabajo de Ascenso para optar a la categoría de Profesor Titular. Puerto La Cruz, Estado Anzoátegui.

Gómez-Guiñán, Y. & I. Nageswara. 1996. Efecto de la rizosfera del maní (Papilonaceae) sobre la flora micótica y la actividad de las fosfatasas. Carib. J. Sci. 32: 214-220.

Gómez-Guiñán, Y. 1998. IV Congreso Interamericano sobre el Medio Ambiente. Universidad Simón Bolivar.

Caracas, Distrito Federal. pp. 253-257.

H´ysek, J. & B. ˘ Sarapatka. 1998. Relationship between phosphatase active bacteria and phosphatase activities in forest soils. Biol. Fertil. Soils 26: 112-115.

Ho, I. 1988. A simple method for assessing acid phosphatase activity of ectomycorrhizal fungi. Trans. Br. Mycol. Soc. 91: 346- 347.

Ho, I. & B. Zak. 1979. Acid Phosphatase activity of six ectomicorrhizal fungi. Can. J. Bot. 57: 1203-1205.

Joner, E.J. & A. Johansen. 2000. Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi. Mycol. Res. 104: 81-86.

Juma, N.G. & M.A. Tabatabai. 1988. Phosphatase activity in corn and soybean roots: Conditions for assay and effects of metals. Plant Soil 107: 39-47.

Kroehler, C. 1988. The effects of organic and inorganic phosphorus concentration on the acid phosphatase activity of ectomycorrhizal fungi. Can. J. Bot. 66: 750-756.

Kropp, B.R. 1990. Variation in acid phosphatase activity among progeny from controlled crosses in the ectomycorrhizal fungus Lacaria bicolor. Can. J. Bot. 68: 864-866.

Kyochi, O. & S. Yoshida. 1988. Phosphomonoesterase activity in cultivated soils amended with different levels of organic materials. Soil Sci. Plant Nutr. 34:239-296.

Nahas, E., J.F. Centurion & L.C. Assis. 1994. Microrganismos solubilizadores de fosfato e produtores de fosfatases de vários solos. Rev. Bras. Cien. Solo 18: 43-48.

Nannipieri, P. 1994. The potential use of soil enzyme as indicators for productivity, sustainability and pollution, pp. 238-244. In C.E. Pankhurst, B.M. Doube, V.V.S.R. Gupta and P.R. Grace (eds.). Soil biota management in sustainable farming systems. CSIRO. Australia.

Rao, A.V. & J.C. Tarafdar. 1993. Role of VAM fungi in nutrient- uptake and growth of clusterbean in an arid

soil. Arid Soil Res. Rehab. 7: 275- 280.

Ridge, E.H. & A.D. Rovira. 1971. Phosphatase activity of intact young wheat roots under sterile and non-sterileconditions. New Phytol. 70: 1017-1026.

Shaykh, M.N. & L.W. Roberts. 1974. A histochemical study of phosphatase in root apical meristems. Ann.

Bot. 38: 165-174.

Tabatabai, M.A. & J.M. Bremner. 1969. Use of p-nitrophenylphosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1: 301-307.

Tadano, T. & H. Sakai. 1991. Secretion of acid phosphatase by the roots of several crop species under phosphorus- deficient conditions. Soil Sci. Plant. Nutr. 37: 129-140.

Tadano, T., K. Ozawa, H. Sakai & H. Matsui. 1993. Secretion of acid phosphatase by root of crop plants under phosphorus deficient conditions and some properties of the enzyme secreted by Lupin roots. Plant Soil. 156: 95-98.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2004 Revista de Biología Tropical

Downloads

Download data is not yet available.