Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Genetic diversity of Costa Rican populations of the rice planthopper <i>Tagosodes orizicolus</i> (Homoptera: Delphacidae)
PDF

Keywords

Tagosodes orizicolus
delphacid
genetic diversity
Wolbachia
RAPDs
cytoplasmic incompatibility
tagosodes orizicolus
delfacido
diversitdad genetica
wolbachia
RAPDs
incompatibilidad citoplasmatica

How to Cite

Hernández, M., Quesada, T., Muñoz, C., & Espinoza, A. M. (2004). Genetic diversity of Costa Rican populations of the rice planthopper <i>Tagosodes orizicolus</i> (Homoptera: Delphacidae). Revista De Biología Tropical, 52(3), 795–806. Retrieved from https://revistas.ucr.ac.cr/index.php/rbt/article/view/15416

Abstract


Tagosodes orizicolus (Homoptera: Delphacidae) is one of the main constraints of the rice production in the Neotropics. This planthopper produces severe damages as a phloem feeder, causes mechanical injury during oviposition and vectors the rice hoja blanca virus (RHBV). The main objective of this study was to determine the genetic diversity of T. orizicolus populations from three rice growing regions of Costa Rica, using RAPDs. Individuals from Guanacaste, Parrita, San Carlos and Cali-Colombia, as outgroup, were analyzed using the random primers. Phenetic relationships revealed that the Costa Rican populations were clearly separated from Cali-Colombia, sharing less than 25% similarity. Costa Rican populations were divided into two main branches separated at 30% similarity. The first branch included Guanacaste and San Carlos and the second displayed Parrita. In relation to similarity indexes within groups, the Guanacaste cluster showed the highest (over 50%) and Cali-Colombia was the most diverse (28%). The correspondence analysis confirmed the clusters of the phenogram and showed close interactions between the Parrita and San Carlos populations. The genetic separation observed could be the result of the geographic isolation among populations, but it could also be explained by the infection with the rickettsia Wolbachia pipientis. This bacterium causes cytoplasmic incompatibility in its host, which results in non-viable progeny when infected males mate with non-infected females, or when insects hosting different strains of Wolbachia mate. Then, a search for Wolbachia in previously described populations of T. orizicolus was initiated. The presence of the bacteria was analyzed by PCR with 16S rDNA-specific primers for Wolbachia. The PCR analyses revealed infections of 86% in the population of San Carlos, 96% in Guanacaste, 37% in Parrita and 100% in Cali-Colombia. Crosses between individuals of T. orizicolus from Parrita and Guanacaste were performed for testing cytoplasmic incompatibility. When infected males were crossed with non-infected females within the same population, a significant reduction in progeny number was obtained as well as when crosses between infected individuals belonging to different populations were performed. These experiments showed cytoplasmic incompatibility not only caused by the presence of Wolbachia within the population, but also by the presence of different strains of the bacteria between populations.
PDF

References

Bordenstein, S.R., F.P. O’Hara & J.H. Werren. 2001. Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature 409: 707-710.

Boyle, L., S. O’Neill, M.H. Robertson & T.L. Karr. 1993. Interspecific and intraspecific horizontal transfer of Wolbachia in Drosophila. Science 260: 1796-1799.

Denno, F.R. & J.T. Perfect. 1994. Planthoppers as models for ecological study and effective pest management. In F.R. Denno & T.J. Perfect (eds.). Planthoppers: Their ecology and management. Chapman & Hall. pp. 1-4.

Espinoza, A.M., A.M. Xet-Mull, R. Mora & E. Sánchez. 2004. Morphologic characterization of yeast-like symbiotes of Tagosodes orizicolus (Homoptera: Delphacidae) by light and electron microscopy. Rev. Biol. Trop. 52: in press.

Galvez, G.E. 1968. Transmission studies of the rice hoja blanca virus with highly active, virus-free colonies of Sogatodes oryzicola. Disease Reporter 45: 949-953.

Gaspari, G., R.A. Malacrida, C. Bandi, R.C. Guglielmino, G. Damiani & L. Baruffi. 1995. Polymorphism within and between populations of Ceratitis capitata: comparison between RAPD and multilocus enzyme electrophoresis data. Heredity 74: 425-437.

Hertig, M. 1936. The rickettsia, Wolbachia pipientis (gen. et. sp. n.) and associated inclusions of the mosquito Culex pipiens. Parasitology 28: 453-486.

Hunt, J.G. & E.R. Page. 1992. Patterns of inheritance with RAPD molecular markers reveal novel types of polymorphism in the honeybee. Theoretical and Applied Genet. 85: 15-20.

Janzen, D.H. 1993. Caterpillar seasonality in a Costa Rican dry forest. pp. 448-477. In N.E. Stamp & T.E. Casey (eds.). Caterpillars. Ecological and evolutionary constraints on foraging. Chapman & Hall, New York.

Joint Plant Breeding Symposia Series. 1992. Applications of RAPD technology to plant breeding. Crop Science Society of America, American Society for Horticultural Science, American Genetic Association. 52 p.

Karnovsky, M.J. 1965. A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J. Cell Biol. 27: 137.

Kisimoto, R. & J. Rosenberg, 1994. Long-distance migration in delphacid planthoppers. In F.R. Denno & T.J. Perfect (eds.). Planthoppers: Their ecology and management. Chapman & Hall. pp. 302-322.

Kozuka, Y. 1989. Laboratory manual for transmission electron microscope specimen preparation. Centro de Investigación en Biología Celular y Molecular CIBCM, Universidad de Costa Rica.

Landry, B.S., L. Dextraze & G. Boivin. 1993. Random amplified polymorphic DNA markers for DNA fingerprinting and genetic variability assessment of minute parasitic wasp species (Hymenoptera: Mymaridae and Trichogrammatidae) use in biological

control programs of phytophagous insects. Genome 36: 580-587.

Laven, H. 1959. Speciation by cytoplasmic isolation in the Culex pipiens complex. Cold Spring Harbor Symposia in Quantitative Biology 24: 166-175.

Morales, F.J. & A.I. Niessen. 1985. Rice hoja blanca virus. Description of plant viruses, N° 299. Commonwealth Mycological Institute/Association of Applied Biologists.

Noda, H. 1984. Cytoplasmic incompatibility in allopatric field populations of the small brown planthopper Laodelphax striatellus, in Japan. Entomol. Exp. Appl. 35: 263-267.

Noda, H. 1987. Further studies of cytoplasmic incompatibility in local populations of Laodelphax striatellus in Japan (Homoptera: Delphacidae). Applied Entomol. Zool. 4: 443-448.

Oliva, M. 1998. Fluctuación poblacional de delfácidos y su ámbito de poáceas hospederas asociadas al arroz en Liberia, Guanacaste. Tesis Lic. en Ingeniería Agronómica, Universidad Nacional, Heredia, Costa Rica.

O’Neill, S.L., R. Giordano, A.M.E. Colbert, T.L.A. Karr & H.M. Robertson. 1992. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc. Nat. Acad. Sci. U.S.A. 89: 2699-2702.

Perfect, T.J. & A.G. Cook. 1994. Rice planthopper population dynamics: A comparison between temperate and tropical regions. In F.R. Denno & T.J. Perfect (eds.). Planthoppers: Their ecology and management. Chapman & Hall. pp. 282-301.

Reynaud, G.G. 1963. Biología, ecología, combate y pruebas de transmisión con Sogatoda orizicola Muir y Sogata cubana (Crauf)- (Araepodidae-Homoptera), vectores del virus de la “Hoja Blanca” del arroz. Tesis de la Escuela Nacional de Agricultura, Chapingo, México. 50 p.

Sambrook, J., T. Maniatis & E.F. Fritsh. 1989. Molecular cloning; a laboratory manual. New York, Cold Spring Harbor Laboratory.

Smith-White, S., A.R. Woodhill. 1954. The nature and significance of non-reciprocal fertility in Aedes scutellaris and other mosquitoes. Proc. Linnaean Soc. New South Wales 79: 163-176.

Ulate, V.G. 1994. El clima de Costa Rica: contraste de dos vertientes. San José, Costa Rica. Editorial Guayacán. 58 p.

Werren, J.H. & J. Jaenike. 1995. Wolbachia and cytoplasmic incompatibility in micophagous Drosophila and their relatives. Heredity 75: 320-326.

Werren, J.H., W. Zhang & L.R. Guo. 1995. Evolution and phylogeny of Wolbachia reproductive parasites of arthropods. Proc. Royal Soc. London Series B 261: 55-71.

Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski & S.V. Tingery. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18: 6531-6535.

Willams, J.G.K., N.M. Teau, G.J. Puterka & J.R. Nechols. 1992. Use of the random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) to detect DNA polymporphisms in aphids (Homoptera: Aphididae). Bull. Entomol. Res. 82: 151-159.

Wilson, M. & M. Claridge. 1991. Handbook for the identification of leafhoppers and planthoppers of rice. C.A.B. Wallingford Oxon, International Institute of Entomology (Natural Resources Institute). 142 p.

Zamora, A. 2001. Diversidad morfológica y genética de las especies de Oryza (Poaceae) nativas de Costa Rica. M.Sc. Thesis. Universidad de Costa Rica, Costa Rica.

Zárate, E. 1977. Principales sistemas de vientos que afectan a Costa Rica y sus relaciones con la precipitación. Lic. Tesis en Meteorología. Escuela de Física, Facultad de Ciencias, Universidad de Costa Rica.

Zárate. E. 1978. Comportamiento del viento en Costa Rica. Nota de investigación No.2. Instituto Meteorológico Nacional. San José, Costa Rica.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2004 Revista de Biología Tropical

Downloads

Download data is not yet available.