Abstract
Espeletia paipana is an endangered giant caulescent rosette endemic to Boyacá department. In order to establish whether a plant disease, characterized by the loss of leaf pubescence (PPF) and attributed to the pathogenic action of endophytic microorganisms, is the cause of the increasing mortality of population, the physiological performance of the species was evaluated with and without PPF. The incidence (% leaves affected in each of the 27 individuals in the current population) and severity (% leaf area affected on 135 leaves) of the PPF were monitored over a period of nine months, in three topographic zones of different heights. During four consecutive days in both dry and wet season, physiological parameters as chlorophyll content index (ICC), stomatal conductance (Gs) and leaf temperature (Tfol) were measured in healthy and affected leaves. The study was complemented with isolations and pathogenicity tests to identify the causal agent of the PPF. Overall, although the disease incidence in E. paipana was constant over time, the severity progressed surpassing 60 % of the leaf area. The increasing of severity in the upper side of leaves was attributed to the photo-oxidative effect of high radiation between 11:00 h and 14:00 h of the day. The reduction of functional leaf area because of the PPF, led to low Gs with serious implications for carbon fixation and thus limiting growth and biomass renewal. The effect of season in Tfol varied according to the topographic zone, while the ICC did not present a defined pattern with respect to the PPF; its low values could be associated with the production of other pigments. Finally, although it is not possible to ensure that Botrytis sp. is the causative of the loss of leaf pubescence, it is postulated as the most probably causal agent due to its high representativeness in the isolates and its infectious potential during the pathogenicity tests. In general, the reduction of healthy leaf biomass and decrease of physiological performance suggest that PPF affect negatively the survival of E. paipana, which means that the use of biological controllers could be a strategy to mitigate its effect on the population.
References
Agrios, G. N. (2005). Plant pathology. California: Editorial Elsevier Academic Press.
Allen, D., & Ort, D. R. (2001). Impacts of chilling temperatures on photosynthesis in warm-climate plants. Illinios: Editorial Elsevier Science.
Alonso-Amelot, M. E. (2008). High altitude plants, chemistry of acclimation and adaptation. In A. Rahman (Ed.), Studies in natural products chemistry (pp. 883-983). Pakistan: Editorial Elsevier Academic Press.
Azócar, A. & Rada, F. (1993). Ecofisiología de plantas de la alta montaña andina. En A. Azocar (Ed.), Repuestas Ecofisiológicas de plantas de ecosistemas tropicales (pp. 82-110). Mérida: Ediciones del CIELAT.
Azócar, A. & Rada, F. (2006). Ecofisiología de plantas de páramo. Mérida: Editorial Litorama.
Barnett, H. L. (1960). Illustrated genera of imperfect fungi. Minneapolis: Editorial Burguess Publishing Company.
Castaño-Zapata, J., & Salazar, H. (1998). Illustrated guide for identification of plant pathogens. Manizales: Universidad de Caldas.
Castaño, C. (2002). Páramos y ecosistemas alto andinos de Colombia en condición hotpost & global climatic tensor. Bogotá: Instituto de Hidrología, Meteorología y Estudios ambientales IDEAM.
Castrillo, M. (2006). Fotosíntesis en tres poblaciones altitudinales de la planta andina Espeletia schultzii (Compositae). Revista Biología Tropical, 54(4), 1143-1149.
Cavender, J., & Bazzaz, F. (2000). Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. Acta Oecologica, 124(1), 8-18.
Cavieres, L. A., Rada, F., Azocar, A., García-Núñez, C., & Cabrera, H. M. (2000). Gas exchange and low temperature resistance in two tropical high mountain tree species from the Venezuelan Andes. Acta Oecologica, 21(3), 203-211.
Colmenares, M., Rada, F., & Luque, R. (2005). Anatomía foliar de Polylepis sericea wedd. (Rosaceae) a dos altitudes en los Altos Andes Venezolanos. Revista Plántula, 3(3), 141-148.
Elad, Y. (1996). Mechanisms involved in the biological control of Botrytis cinerea incited diseases. European Journal of Plant Pathology, 102(8), 719-732.
Elad, Y., & Shtienberg, D. (1995). Botrytis cinerea in greenhouse vegetables: chemical, cultural, physiological and biological controls and their integration. Integrated Pest Management Reviews, 1(1), 15-29.
Fisher, P. J., & Petrini, O. (1991). Fungal saprobes and pathogens as endophytes of rice (Oryza sativa L.). New Phytologist, 120(1), 137-143.
Fitter, A. H., & Hay, R. K. M. (2002). Environmental Physiology of Plants. San Diego: Academic Press.
French, E. R., & Hebert, T. T. (1980). Métodos de investigación fitopatológica. San José: Instituto Interamericano de Ciencias Agrícolas de la OEA.
Gates, D. (1980). Biophysical Ecology. New York: Springer-Verlag.
Goldstein, G., Meinzer, F., & Monasterio, M. (1985). Physiological and mechanical factors in relation to size-dependent mortality in an Andean giant rosette species. Acta Oecológica, 6(20), 263-275.
Goldstein, G., Rada, F., Canales, M. O., & Zabala, O. (1989). Leaf gas exchange of two giant caulescent rosette species. Acta Oecologica (Oecologia Plantarum), 10(4), 359-370.
H.M.R. (1899). Botrytis and its host. The American Naturalist, 33(393), 753-754.
Hanlin, R. (1990). Illustrated genera of ascomicetes. Minnesota: APS Press.
Hofstede, R. (1995). The effects of grazing and burning on soil and plant nutrient concentrations in Colombian Páramo Grasslands. Plant and Soil, 173(1), 111-132.
Hofstede, R., Segarra, P., & Mena, P. (2003). Los páramos del mundo. Proyecto atlas mundial de los páramos. Quito: Global Peatland Initiative/NC-IUCN/EcoCiencia.
Körner, C. (2003). Alpine Plant Life: Functional Plant Ecology of Mountain Ecosystems. Berlin: Editorial Springer.
Kozlowski, T. T., & Pallardy, G. G. (1979). Effects of low temperature on leaf diffusion resistance of Ulmus americana and Fraxinus pennsylvanica seedlings. Canadian Journal of Botany, 57(21), 2466-2470.
Lang, M., & Schindler, C. (1994). The effect of leaf-hairs on blue and red fluorescence emission and on zeaxanthin cycle performance of Senecio medley L. Journal of Plant Physiology, 144(6), 680-685.
Levizou, E., Drilias, P., Psaras, G., & Manetas, Y. (2005). Nondestructive assessment of leaf chemistry and physiology through spectral reflectance measurements may be misleading when changes in trichome density co-occur. New Phytologist, 165(2), 463-472.
López, F. P. (2004). Diagnóstico del estado de conservación de “Espeletia paipana” (Tesis inédita de pregrado). Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.
Luteyn, J. L. (1992). Páramos: why study them?. In H. Balslev, & J. L. Luteyn (Eds.), Páramo: An andean ecosystem under human influence (pp. 1-14). London: Academic Press.
Luteyn, J. L. (1999). Páramos: A Checklist of plant diversity, Geographic Distribution and Botanical Literature. New York: Memoris of the New York Botanical Garden.
Manuel, N., Cornic, G., Aubert, S., Choler, P., Bligny, R., & Heber, U. (1999). Protection against photoinhibition in the alpine plant Geum montanum. Oecologia, 119(2), 149-158.
Meinzer, F., & Goldstein, G. (1985). Some Consequences of leaf pubescence in the Andean Giant rosette plant Espeletia timotensis. Ecology, 66(2), 512-520.
Molina-Montenegro, M. A. (2008). Variación de la pubescencia foliar en plantas y sus implicaciones funcionales a lo largo de gradientes altitudinales. Ecosistemas, 17(1), 146-154.
Molina-Montenegro, M. A., & Cavieres, L. A. (2010). Altitudinal variation of morpho-physiological traits in two High-Andean plant species and its effects against the photoinhibition. Gayana. Botánica, 67(1), 1-11.
Monasterio, M. (1980). Estudios ecológicos en los Páramos Andinos. Mérida: Universidad de Los Andes.
Monasterio, M., & Sarmiento, L. (1991). Adaptive radiation of Espeletia in the cold andean tropics. Trends Ecology and Evolution, 6(12), 387-391.
Paul, A. R. (1982). Winter leaf spot on Borage caused by Nigrospora oryzae. Australasian Plant Pathology, 11(1), 9-10.
Rada, F., Azocar, A., González, J., & Briceño, B. (1998). Leaf gas exchange in Espeletia schultzii a giant caulescent rosette plant along an altitudinal gradient in the Venezuelan Andes. Acta Oecologica, 19(1), 73-79.
Ranjbarfordoei, A., Samson, R., & Van Damme, P. (2011). Photosynthesis performance in sweet almond [Prunus dulcis (Mill) D. Webb] exposed to supplemental UV-B radiation. Photosynthetica, 49(1), 107-111.
Sánchez, C., & Cely, G. (2003). Evaluación del estado de conservación de la vegetación en la reserva la Ranchería, Paipa, Boyacá. (Tesis inédita de pregrado). Universidad Pedagógica y Tecnológica de Colombia. Tunja, Colombia.
Sandquist, D., & Ehleringer, J. (1997). Intraspecific variation of leaf pubescence and drought response in Encelia farinose associated with contrasting desert environments. New Phytologist, 135(4), 635-644.
Sempere, F., & Santamarina, M. P. (2008). Suppression of Nigrospora oryzae (Berk. & Broome) Petch by an aggressive mycoparasite and competitor, Penicillium oxalicum Currie & Thom. International Journal of Food Microbiology, 122(1-2), 35-43.
Solano, C., Roa, C., & Calle, Z. (2005). Estrategia de desarrollo sostenible. Corredor de conservación Guantiva - La Rusia - Iguaque. Boyacá-Santander/Colombia. Bogotá: Fundación Natura.
Tyree, M., Velez, V., & Dalling, J. W. (1998). Growth dynamics of root and shoot hydraulic conductance in seedlings of five neotropical tree species: scaling to show possible adaptation to different light regimes. Oecologia, 114(3), 293-298.
Valladares, F., Chico, J. M., Aranda, I., Balaguer, L., Dizengremel, P., Manrique, E., & Dreyer, E. (2002). The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity. Trees, 16(6), 395-403.
Vargas, O., Jaimes, V., Castellano, L., & Mora, J. (2004). Proyecto Páramo andino. Propuesta de actividades de investigación para los páramos de Colombia. Bogotá: Universidad Nacional de Colombia.
Widiastuti, A., Yoshino, M., Saito, H., Maejima, K., Zhou, S. Y., Odani, H., Hasegawa, M., Nitta, Y., & Sato, T. (2011). Induction of disease resistance against Botrytis cinerea by heat shock treatment in melon (Cucumis melo L.). Physiological and Molecular Plant Pathology, 75(4), 157-162.
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2015 Revista de Biología Tropical