Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Epiphytes from a forest type transition zone in the Choco biogeographic region, Valle del Cauca, Colombia


Choco biogeographic region
microclimate factors
vascular and nonvascular epiphytes.
Chocó biogeográfico
factores microclimáticos
epífitas vasculares y no vasculares.

How to Cite

Soto-Medina, E., Londoño-Lemos, V., & Díaz-Escandón, D. (2015). Epiphytes from a forest type transition zone in the Choco biogeographic region, Valle del Cauca, Colombia. Revista De Biología Tropical, 63(4), 915–926.


Tropical moist forests are ecosystems of high biodiversity and high endemism, like the Choco biogeographic ecoregion. Few studies have characterized this vegetation system, and less attention has been given to the epiphytes. The aim of this study, was to evaluate the diversity and composition of vascular and nonvascular epiphytes, in a transition zone between tropical moist forest and tropical dry forest in the Choco biogeographic region of Valle del Cauca, Colombia. For this study, the data were grouped into six zones along the Loboguerrero-Buenaventura road: Zone 1 was closest to the Pacific Ocean (tropical moist forest) and Zone 6 was closest to the subxerophytic enclave of The Dagua River (transition zone to tropical dry forest). The data also were grouped depending on exposure to light (microsites), and the sites were categorized as open, semi-open and closed. A total of 43 trees densely covered by epiphytes were sampled: non-vascular epiphytes were sampled up to 2 m high, while vascular epiphytes were sampled along the entire phorophyte. A total of 485 specimens of non-vascular epiphytes belonging to 77 species of lichens, five of liverworts and eight of mosses were collected, for a total of 90 species. In addition, 5 987 individuals belonging to 24 species of vascular epiphytes were found; Bromeliaceae (six species) was the richest in species, followed by Gesneriaceae, Orchidaceae and Polypodiaceae (each with four species). We found 25 new records of lichens for Colombia and 26 for the Choco biogeographic region; for vascular epiphytes, we found 11 new records for this same Choco region. The richness and diversity of nonvascular epiphytic communities were affected by the zone and the microsite in which the trees were located, while the vascular epiphytic communities, were affected by the zone along the road. Thus, the richness and diversity of the communities of nonvascular epiphytes were affected by both the forest type and the microsite where the trees were found, while communities of vascular epiphytes, were affected only by the forest type.


Aguirre-C., J. (2008). Catálogo de los líquenes de Colombia. In J. O. Rangel (Eds.). Colombia diversidad biótica VI: Riqueza y diversidad de los musgos y líquenes en Colombia (pp. 401-547). Bogotá: Universidad Nacional de Colombia.

Alzate, F., Cardona, F., & Callejas, R. (2001). Diversidad y composición de epífitas vasculares en robledales de Antioquia (Colombia). Actualidades Biológicas, 23(74), 25-31.

Archer, A. W. (2009). Graphidaceae. Flora of Australia, 57, 84-194.

Arévalo, R. & Betancour, J. (2004). Diversidad de epífitas vasculares en cuatro bosques del sector suroriental de la serranía de Chiribiquete, Guayana Colombiana. Caldasia, 26(2), 359-380.

Bartels, S. F., & Chen, H. Y. H. (2012). Mechanisms regulating epiphytic plant diversity. Critical Reviews in Plant Sciences, 31(5), 391-400.

Benzing, D. H. (1987). Vascular epiphytism: Taxonomic participation and adaptive

diversity. Annals of the Missouri Botanical Garden, 74(2), 183-204.

Benítez, A., Prieto, M., González, Y., & Aragón, G. (2012). Effects of tropical montane forest disturbance on epiphytic macrolichens. Science of the Total Environment, 441, 169-175.

Brodo, I. M. (1966). Lichen growth and cities: A study on Long Island, New York. The Bryologist, 69, 427-449.

Cáceres, M. E. S., Lücking, R., & Rambold, G. (2007). Phorophyte specificity and environmental parameters versus stochasticity as determinants for species composition of corticolous crustose lichen communities in the Atlantic moist forest of northeastern Brazil. Mycological Progress, 6(3), 117-136.

Foster, P. (2001). The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews, 55, 73-106.

Gentry, A. H., & Dodson, C. H. (1987). Diversity and biogeography of Neotropical vascular epiphytes. Annals of the Missouri Botanical Garden, 47(2), 205-233.

Gotelli, N. J., & Entsminger, G. L. (2004). EcoSim: Null models software for ecology. Version 7. Burlington: Acquired Intelligence Inc. & Kesey-Bear. Jericho, VT 05465,

Holdridge, L. R. (1967). Life zone ecology. San José, Costa Rica: Tropical Science Center.

Holz, I., & Gradstein, S. R. (2005). Cryptogamic epiphytes in primary and recovering upper montane oak forests of Costa Rica-species richness, community composition and ecology. Plant Ecology, 178, 89-109.

IDEAM. (2014). Estación Meteorológica Cisneros. Promedios climatológicos 1981 a 2010 (Last view: September, 2014

Lakatos, M., Rascher, U., & Büdel, B. (2006). Functional characteristics of corticolous lichens in the understory of a tropical lowland moist forest. New Phytologist, 172, 679-695.

Mateus, N., Aguirre, J., & Lucking, R. (2012). Contribuciones a la biota liquénica folícola del Chocó (Colombia). Caldasia, 34(1), 25-32.

McCune, B. (1990) Rapid Estimation of Abundance of Epiphytes on Branches. The Bryologist, 93(1), 39-43.

McCune, B., & Mefford, M. J. (1999). PC-ORD Multivariate analysis of ecological data, Version 4.0. Gleneden Beach: MjM Software. Retrieved from

McCune, B., Grace, J. B., & Urban, D. L. (2002). Analysis of ecological communities. Oregon: MjM Software, Gleneden Beach.

Moncada, B., Aguirre-C., J., & Lücking, R. (2014) Ecogeografía del género Sticta (Ascomycota liquenizados: Lobariaceae) en Colombia. Revista de Biología Tropical, 62(2), 257-272.

Mori, S. A., Boom, B., Carvalho, A. M., & dos Santos, T. S. (1983). Ecological importance of Myrtaceae in an eastern Brazilian wet forest. Biotropica, 15, 68-70.

Rangel, J. O. (2011). Colombia diversidad biótica XI, patrones de la estructura y de la riqueza de la vegetación en Colombia. Bogotá: Instituto de Ciencias Naturales.

Rivas- Plata, E., Lücking, R., & Lumbsch, H. T. (2008). When family matters: an analysis of Thelotremataceae (lichenized Ascomycota: Ostropales) as bioindicators of ecological continuity in tropical forests. Biodiversity and Conservation, 17, 1319-1351.

Ruiz-Domínguez, C. & Cabrera-Rodríguez, I. (2012). Colecciones florísticas realizadas en la provincia del Chocó biogeográfico colombiano. Biota Colombiana, 13(1), 3-17.

Rosabal, D., Burgaz, A. R., & de la Masa, R. (2010). Diversity and distribution of epiphytic macrolichens on tree trunks in two slopes of the montane moist forest of Gran

Piedra, Santiago de Cuba. Bryologist, 113, 313-321.

Soto-Medina, E., Lücking, R., & Bolaños-Rojas, A. (2011). Especificidad de forófito y preferencias microambientales de los líquenes cortícolas en cinco especies de forófitos en el bosque premontano de la finca Zíngara (Cali, Colombia). Revista de Biología Tropical, 59(4), 843-856.

Statsoft. (2005). STATISTICA (data analysis software system), Version 7.1. Tulsa: Statsoft, Inc. Retrieved from

Wolf, J. H. D. (1994). Factors controlling the distribution of vascular and nonvascular epiphytes in the northern Andes. Vegetatio, 112, 15-28.



Download data is not yet available.