Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Histology of the digestive tract of three species of sea cucumber Isostichopus badionotus, Stichopus sp. and Stichopus hermanni (Aspidochirotida: Stichopodidae).
PDF (Español (España))
HTML (Español (España))

Keywords

celomocitos
enterocitos
intestino
histología
holoturia.
coelocmocytes
enterocytes
gut
histology
Holothuria.

How to Cite

Vergara, W., & Rodríguez, A. (2015). Histology of the digestive tract of three species of sea cucumber Isostichopus badionotus, Stichopus sp. and Stichopus hermanni (Aspidochirotida: Stichopodidae). Revista De Biología Tropical, 63(4), 1021–1033. https://doi.org/10.15517/rbt.v63i4.16887

Abstract

Sea cucumbers have an important ecological role in the marine environment because they are able to process organic and inorganic matter, which contributes to the oxygenation and energy transfer in the ecosystem. In general, there is a lack of knowledge on the basic morphology of native species of sea cucumber and the function of vital organs. The aim of this study was to describe the histology of the digestive tract (DT) of three species of holothuroids from Rodadero Bay, Colombia. Thirty specimens of Isostichopus badionotus, Stichopus sp. and Stichopus hermanni were obtained and sacrificed by hypothermia. In the laboratory, sections of foregut, midgut and hindgut were obtained and fixed in formalin (10%) for later conventional histological processes; besides, some samples were fixed in glutaraldehyde (3%) for their inclusion in resins and studies in high resolution and electron microscopy. For the studied species, the DT is long, folded, and is distributed in the coelomic cavity; it has at least twice the length of the sea cucumber body. The DT presents villi lined by a columnar pseudostratified ciliated epithelium, which rests on a basement membrane and a layer of collagen fibers. Four types of cells were identified: coelocmocytes, brown cells, enterocytes and mucous cells, and the spicules were evident throughout the digestive tract tissue. Light microscopy showed elongated inclusions of calcareous formation located essentially in the hindgut, "the psamoma bodies". We observed granular mucous cells with an apical surface with numerous microvilli. The histology of the DT of I. badionotus, Stichopus sp. and S. hermanni were found to be similar, but we found differences (p<0.05) in the thickness of the intestinal submucosa tissue, which can be tied to specific feeding habits of each species. Characterization of the morphohistology of the digestive tract of sea cucumber is a useful tool to understand their feeding physiology.

 

https://doi.org/10.15517/rbt.v63i4.16887
PDF (Español (España))
HTML (Español (España))

References

Arrontes, J. (1990). Diet, food preference and digestive efficiency in intertidal isopoda inhabiting macroalgae. Journal of Experimental Marine Biology and Ecology, 139, 231-249.

Aydin, M., Hüseyin, S., Bekir, T., Yilmaz, E., & Sevim, K. (2011). Proximate composition and fatty acid profile of three different fresh and dried commercial sea cucumbers from Turkey. International Journal of Food Science and Technology, 46, 500-508.

Baird, B. H., & Thistle, D. (1986). Uptake of bacterial extracelular polymer by a deposit-feeding holothurians (Isostichopus badionotus). Marine Biology, 92, 183-187.

Bakus, J. G. (1973). The biology and ecology of tropical holothurians. In: OA Jones and R Edeans (Ed.), Biology and Geology of Coral Reefs (Vol. II, pp 326-367). New York: Academic Press.

Bordbar, S., Anwar, F., & Saari, N. (2011). High-value components and bioactives from sea cucumbers for functional foods - A review. Marine Drugs, 9(10), 1761-1805.

Calva, L. B. (2002). Hábitos alimenticios de algunos equinodermos. Parte 2. Erizos de Mar y Pepinos de Mar. ContactoS. 3ª Epoca, 47, 54-63.

Canicattì, C., D’ancona, G., & Farina-Lipari, E. (1989). The coelomocytes of Holothuria polii (Echinodermata). I. Light and electron microscopy. Italian Journal of Zoology, 56, 29-36.

Conand, C., & Byrne, M. (1993). A review of recent developments in the world sea cucumber fisheries. Marine Fisheries Review, 55, 1-13.

Costelloe, J., & Keegan, B. F. (1984). Feeding and related morphological structures in the dendrochirote Aslia Iefevrei (Holothuroidea: Echinodermata). Marine Biology, 84, 135-142.

Chen, J. (2004). Present status and prospects of sea cucumber industry in China. bêche de mer. SPC Beche-de-mer Information Bulletin, 19, 2.

Eliseikina, M. G., & Magarlamov, T. Y. (2002). Coelomocyte morphology in the holothurians A. japonicus (Aspidochirotida: Stichopodidae) and Cucumaria japonica (Dendrochirotida: Cucumariidae). Russian Journal of Marine Biology, 28, 197-202.

Ferguson, J. C. (1969). Feeding, digestion and nutrition in Echinodermata. In M. Flokin, & B. T. Scheers (Ed.), Chemical Zoology (pp. 71 - 96). New York: Academic Press.

Feral, J. P., & Massin, C. (1982). Digestive systems: Holothuroidea. In M. Jangoux, & J. M. Lawrence (Ed.), Echinoderm Nutrition (pp. 191-212). Rotterdam: Balkema.

Fontaine, A. R., & Lambert, P. (1977). The fine structure of the leucocytes of the holothurian, Cucumaria miniata. Canadian Journal of Zoology, 55(9), 1530-1544.

Foster, G. G., & Hodgson, A. N. (1996). Feeding, tentacle and gut morphology in five species of southern African intertidal holothuroids (Echinodermata). South African Journal of Zoology, 31, 70-79.

Frolova, L. T., & Dolmatov, I. Y. (2010). Microscopic anatomy of the digestive system in normal and regenerating specimens of the brittlestar Amphipholis kochii. The Biological Bulletin, 218, 303-316.

García-Arrarás. J. E., & Greenberg, M. J. (2001). Visceral Regeneration in Holothurians. Microscopy Research and Techineque, 55, 438-451.

García-Arrarás, J. E., Estrada-Rodgers, L., Santiago, R., Torres, I. I., Díaz-Miranda, L., & Torres-Avillán, I. (1998). Cellular mechanisms of intestine regeneration in the sea cucumber, Holothuria glaberrima Selenka (Holothuroidea: Echinodermata). Journal of Experimental Zoology, 281(4), 288-304.

Goff, S. A., & Klee. H. J. (2006). Plant volatile compounds: sensory cues for health and nutritional value? Science, 311, 815-819.

Green, C. R., Bergquist, P. R., & Bullivant, S. (1979). An anastomosing septate junction in endothelial cells of the phylum Echinodermata. Journal of Ultrastructure Research, 68, 72-80.

Guzman, H. M., & Guevara, C. A. (2002). Population structure, distribution and abundance of three commercial species of sea cucumber (Echinodermata) in Panama. Caribbean Journal of Science, 38 (3-4), 230-238.

Hamel, J. F., Hilmmelman, J. H., & Dufresne. L. (1993). Gametogenesis and spawning of the sea cucumber Psolus fabricii (Duben and Koren). The Biological Bulletin, 184, 125-143.

Hammond, L. S. (1982). Analysis of grain size selection by depositfeeding holothurians and echinoids (Echinodermata) from a shallow reef lagoon. Discovery Bay, Jamaica. Marine Ecolology Progress Series, 8, 25-36.

Hernández-Sámano, A. C. (2010). Identificación y caracterización de proteasas del pepino de mar (Tesis de Maestría). Universidad Autónoma Metropolitana, Unidad Iztapalapa, México.

Herreid, C. F., Larussa, V. F., & Defesi. C. R. (1976). Blood vascular system of the sea cucumber Stichopus moebii. Journal Morphology, 150, 423-451.

Hetzel, H. R. (1965). Studies on holothurian coelomocytes. II. The origin of coelomocytes and the formation of brown bodies. The Biological Bulletin, 12, 102-112.

Hudson, I. R., Wigham, B. D., & Tyler, P. A. (2004). The feeding behaviour of a deep-sea holothurian, Stichopus tremulus (Gunnerus) based on in situ observations and experiments using a Remotely Operated Vehicle. Journal of Experimental Marine Biology and Ecology 301, 75-91.

Humason, G. L. (1972). Animal tissue techniques. San Francisco: W.H. Freeman and Company.

Hyman, L. H. (1955). The Invertebrates: Echinodermata. the celomate bilateria. New York: McGraw-Hill Book Company.

Jangoux, M., & Lawrence, J. M. (Ed.). (1982). Echinoderm nutrition. Rotterdam: Balkema CRC Press.

Jensen, K. R. (1983). Factors affecting feeding selectivity in herbivorous Ascoglossa (Mollusca: Opisthobranchia). Journal of Experimental Marine Biology and Ecology, 66, 135-148.

Kamenev, Y. O., Dolmatov, I. Y., Frolova, L. T., & Nguyen, A. K. (2013). The morphology of the digestive tract and respiratory organs of the holothurian Cladolabes schmeltzii (Holothuroidea, Dendrochirotida). Cell Tissue Research. 45, 126-139.

Liao, Y. (1997). Fauna Sinica Phylum Echinodermata Class Holothuroidea. Beijing: Science Press.

Mashanov, V. S., Frolova, L. T., & Dolmatov, I. Y. (2004). Structure of the digestive tube in the holothurian Eupentacta fraudatrix (Holothuroidea, Dendrochirota). Russian Journal of Marine Biology, 30, 314-322.

Mashanov, V. S., & Dolmatov, I. Y. (2001). Ultrastructure of the alimentary canal in five-month-old pentactulae of the holothurian Eupentacta fraudatrix. Russian Journal of Marine Biology, 27, 320-328.

Massin, C., Zulfigar, Y., Tan Shau Hwai, A., & Rizal Boss, S. Z. (2002). The genus Stichopus (Echinodermata: Holothuroidea) from the Johore Marine Park (Malaysia) with the description of two new species. Bulletin de l'Institut Royal des Sciences Naturelles de Belgique Biologie, 72, 73-99.

Massin, C. (1982). Food and feeding mechanisms: Holothuroidea. In M. Jangoux, & J. M. Lawrence. (Ed.), Echinoderm nutrition (pp. 43-55). Rotterdam: A. A. Balkema.

Morgan, A. D. (2000). Induction of spawning in the sea cucumber Holothuria scabra (Echinodermata: Holothuroidea). Journal of the World Aquaculture Society, 31(2): 186-194.

Pérez-Ruzafa, A., & Marcos, C. (1987). Observaciones sobre la actividad diaria y la ecología de algunas holoturias (Echinodermata: Holothuroidea) litorales. Anales de Biología, 12: 79-90.

Purcell, S. W, Samyn, Y., & Conand, C. (2012). Commercially important sea cucumbers of the world. Food and Agriculture Organization of the United Nations.

Richmond, R. H. (Ed.). (1996). Suggestions for the Management of Sea Cucumber Resources in Micronesia (Technical Report 101). Guam: University of Guam Marine Laboratory.

Richmond, R. H., & Martínez, P. C. (1993). Sea cucumber fisheries in the Galápagos Islands. Biological aspects, impacts and concerns (Technical Report, 18). World Conservation Union (IUCN).

Roberts. D. (1979). Deposit-feeding mechanisms and resource partitioning in tropical holothurians. Journal of Experimental Marine Biology and Ecology, 37, 43-56.

Roberts, D., & Bryce, C. (1982). Further observations on tentacular feeding mechanisms in holothurians. Journal of Experimental Marine Biology and Ecology, 59, 151-163.

Roberts, D., & Moore, H. M. (1997). Tentacular diversity in deep-sea deposit-feeding holothurians: implications for biodiversity in the deep sea. Biodiversity Conservation, 6(11), 1487-1505.

Roberts, D., Moore, H. M., Berges, J., Patching, J. W., Carton, M. W., & Eardly, D. F. (2001). Sediment distribution, hydrolytic enzyme profiles and bacterial activities in the guts of Oneirophanta mutabilis, Psychropotes longicauda and Pseudostichopus villosus: what do they tell us about digestive strategies of abyssal holothurians? Progress in Oceanography, 50(1): 443-458.

Smiley, S. (1994). Holothuroidea. In F.W. Harrison, & F. S. Chiao (Ed.), Microscopic Anatomy of Invertebrates (pp. 401-471). New York: Wiley-Liss.

Toral-Granda, V. (2006). La situación biológica y comercial de cohombros de mar de las familias holothuriidae y stichopodidae (Documento de trabajo de la vigésima segunda reunión del Comité de Fauna). Lima, Perú.

Uthicke, S. (1999). Sediment bioturbation and impact of feeding activity of Holothuria (Halodeima) atra and Stichopus chloronotus, two sediment feeding holothurians, at Lizard Island, Great Barrier Reef. Bulletin of Marine Science, 64: 129-141.

Uthicke, S. (2001). Nutrient regeneration by abundant coral reef holothurians. Journal of Experimental Marine Biology and Ecology, 265: 153-170.

Warnau, M., Temara, A., Ameye, L., & Jangoux, M. (1998). The excretory function of the posteriormost part of the echinoid and holothuroid gut (Echinodermata). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 120(4), 687-691.

Watson, D. C., & Norton, T. A. (1985). Dietary preferences of the common periwinkle, Littorina littorea (L.). Journal of Experimental Marine Biology and Ecology, 88, 193-211.

Xing, K., Yang, H. Sh., & Chen, M. Y. (2008). Morphological and ultrastructural characterization of the coelomocytes in Apostichopus japonicas. Aquatic Biology, 2, 85-92.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2015 Revista de Biología Tropical

Downloads

Download data is not yet available.