Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Seed germination and dormancy of Miconia chartacea (Melastomataceae) in response to light, temperature and plant hormones.
HTML (Español (España))
PDF (Español (España))

Keywords

especie no pionera
fotoblastismo positivo
rojo/rojo lejano
latencia fisiológica
posmaduración
etileno.
non-pioneer species
photoblastism
red/far-red
physiological dormancy
after-ripening
ethylene.

How to Cite

Escobar Escobar, D. F., & Cardoso, V. J. M. (2015). Seed germination and dormancy of Miconia chartacea (Melastomataceae) in response to light, temperature and plant hormones. Revista De Biología Tropical, 63(4), 1169–1184. https://doi.org/10.15517/rbt.v63i4.17955

Abstract

Miconia chartacea is a widely distributed tree along both altitudinal and latitudinal gradients in Brazil, and it can be found in seasonal xerophytic vegetation, e.g. Caatinga and Cerrado, and tropical rainforest (e.g. Mata Atlantica), from grassland with scattered trees to mature forest. We studied the germination response of M. chartacea seeds to light, temperature, plant hormones and after-ripening at low temperature. Seeds were collected from a Cerrado reserve located in Corumbataí, Sao Paulo State, which characterizes to have a cool dry season from April to September, and a warm wet season from October to March. M. chartacea seeds are dispersed in the dry season and exhibited a photoblastic behavior both at constant and alternating temperatures. The germination was decreased at irradiances below 17 μmol / m2s, whereas R: FR ratios below 0.4 reduced the germination rate, but not the germination capacity. The germination-permissive temperatures range from 15 to 35 °C, with an optimum interval from 20 to 25 °C. Germination is not improved by alternating temperature regimes as compared to isothermal treatments. The seeds have a non-deep physiological dormancy, which can be partially overcame either by dry after-ripening at 7 °C for 93 days, or by the 2-chloroethylphosphonic acid treatment. The thermal window within which the seeds germinate was narrower for seeds matured in the rainy to dry season transition period, under warmer conditions, than in the dry season. Cold requirement for dormancy break in seeds of M. chartacea can prevent the germination in the winter, allowing the seeds to germinate in the summer under more favorable conditions. The results suggest that seed response to temperature accounts for temporal distribution of germination, of M. chartacea, while light predominantly influences the spatial distribution of seedlings, precluding the germination of buried seeds and affecting the germination response to gap size.

https://doi.org/10.15517/rbt.v63i4.17955
HTML (Español (España))
PDF (Español (España))

References

Allen, P. S., Benech-Arnold, R. L., Batlla, D., & Bradford, K. J. (2007). Modeling of seed dormancy. In K. J. Bradford, & H. Nonogaki (Eds.), Seed Development, Dormancy and Germination (pp. 72-112). Oxford: Blackwell Publishing.

Baskin, C. C., & Baskin, J. M. (1998). Seeds: Ecology, biogeography, and evolution of dormancy and germination. San Diego: Academic Press.

Baskin, J. M., & Baskin, C. C. (2005). Classification, biogeography and phylogenetic relationships of seed dormancy. In R. D. Smith, J. B. Dickie, S. H. Linington, H. W. Pritchard, & R. J. Probert (Eds.), Seed conservation: turning science into practice (pp. 517-544). London: The Royal Botanic Gardens.

Batlla, D., & Benech-Arnold, R. L. (2003). A quantitative analysis of dormancy loss dynamics in Polygonum aviculare L. seeds: Development of a thermal time model based on changes in seed population thermal parameters. Seed Science Research, 13, 55-68.

Baumgratz, J. F. A. (1985). Morfologia dos frutos e sementes de Melastomataceae brasileiras. Arquivos do Jardim Botânico RJ, 27, 113-155.

Blakesley, D., Elliott, S., Kuarak, C., Navakitbumrung, P., Zangkum, S., & Anusarnsunthorn, V. (2002). Propagating framework tree species to restore seasonally dry tropical forest: implications of seasonal seed dispersal and dormancy. Forest Ecology and Management, 164, 31-38

Bradford, K. J. (2002). Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 50, 248-260.

Carreira, R. C., & Zaidan, L. B. P. (2007). Germinação de sementes de espécies de Melastomataceae de Cerrado sob condições controladas de luz e temperatura. Hoehnea, 34(3), 261-269.

Corbineau, F., Xia, Q., Bailly, C., & El-Maarouf-Bouteau, H. (2014). Ethylene, a key factor in the regulation of seed dormancy. Frontiers in plant Science, 5(539), 1-13.

Ellison, A. M., Denslow, J. S., Loiselle, B. A., & Brenés, M. D. (1993). Seed and seedling ecology of Neotropical Melastomataceae. Ecology, 74, 1733-1749.

Escobar, D. F. E. (2014). Fisioecologia de sementes de Miconia chartacea (MELASTOMATACEAE) ocorrente em uma reserva de cerrado, no município de Corumbataí (SP) (Tesis de maestría). Universidade Estadual Paulista, Rio Claro, Brasil.

Falleri, E., Muller, C., & Laroppe, E. (1997). Effect of ethephon on dormancy breaking in Beechnuts. In R. H. Ellis, M. Black, A. J. Murdoch, & T. D. Hong (Eds.), Basic and applied aspects of seed biology. Current plant science and biotechnology in agriculture (pp. 303-309. Dordrecht: Kluwer Academic Publishers.

Fenner, M., & Thompson, K. (2005). Germination. In M. Fenner, & K. Thompson (Eds.), The Ecology of Seeds (pp. 110-135). Cambridge: Cambridge University Press.

Ferri, M. G. (1977). Ecologia dos Cerrados. In IV Simposio Sobre o Cerrado (pp. 15-36). Belo Horizonte: EDUSP.

Feurtado, J. A., & Kermode, A. R. (2007). A merging of paths: abscisic acid and hormonal crosstalk in the control of seed dormancy maintenance and alleviation. In K. J. Bradford, & H. Nonogaki (Eds.), Seed development, dormancy and germination (Vol. 27, pp. 176-223). Annual Plant Reviews. Oxford: Blackwell Publishing.

Finch-Savage, W. E., & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. The New Phytologist, 171(3), 501-23.

Finney, D. J. (1952). Probit Analysis (2nd ed.). Cambridge: Cambridge University Press.

Forbis, T. A., Floyd, S. K., & de Queiroz, A. (2002). The evolution of embryo size in angiosperms and other seed plants: implications for the evolution of seed dormancy. Evolution, 56, 2112-2125.

Franco, A. C. (2002). Ecophysiology of woody plants. In P. S. Oliveira, & R. J. Marquis (Eds.), The Cerrados of Brazil: ecology and natural history of a neotropical savanna (pp. 178-197). New York: Columbia University Press.

Garcia-Huidobro, J. M., Monteith, J. L., & Squire, G. R. (1982).Time, temperature and germination of pearl millet (Pennisetum thyphoids S. & H.). I. Constant temperature. Journal Experimental Botany, 33(133), 288-296.

Garwood, N. C. (1983). Seed germination in a seasonal tropical forest in Panama: a community study. Ecological Monographs, 53, 159-181.

GBIF. (2013, July). Global biodiversity information facility. Retrieved from http://www.gbif.org/

Godoi, S., Grandis, A., & Takaki, M. (2009). A germinação de sementes de Miconia theaezans (Bonpl.) Cogniaux (Melastomataceae) é controlada pelo fitocromo. Naturalia, 32, 13-22.

Goldenberg, R. (2010). Miconia chartacea in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. Retrieved from http://floradobrasil.jbrj.gov.br/2010/FB009684

Grime, J. P., Mason, G., Curtis, A. V., Rodman, J., Band, S. R., Mowforth, M. A. G., Neal, A. M., & Shaw, S. (1981). A comparative study of germination characteristics in a local flora. Journal of Ecology, 69, 1017-1059.

Higuchi, P., Silva, A. C., van den Berg, E., & Pifano, D. S. (2011). Associações espaciais entre indivíduos de diferentes espécies de Miconia spp. RUIZ & PAV. (Melastomataceae). Revista Árvore, 35(3), 381-389.

Iglesias-Fernández, R., Rodríguez-Gacio, M. C., & Matilla, A. J. (2011). Progress in research on dry afterripening. Seed Science Research, 21, 69-80

Jacobi, C. M., Carmo, F. F., Vincent, R. C., & Stehmann, J. R. (2007). Plant communities on ironstone outcrops: a diverse and endangered Brazilian ecosystem. Biodiversity Conservation, 16, 2185-2200.

Karssen, C. M. (1995). Hormonal regulation of seed development, dormancy and germination studied by genetic control. In H. Kigel, & G. Galili (Eds.), Seed Development and Germination (pp. 333-350). New York: Marcel Dekker.

Khurana, E., & Singh, J. S. (2001). Ecology of seed and seedling growth for conservation and restoration of tropical dry forest: a review. Environmental Conservation, 28, 39-52.

Labouriau, L. G. (1983). A Germinação das sementes. Washington D. C.: Secretaria Geral da Organización dos Estados Americanos.

Laboriau, L. G., Valio, I. F. M., & Heringer, E. P. (1964). Sobre o sistema reprodutivo das plantas dos cerrados I. Anais Academia Brasileira Ciências, 36(4), 449-464.

Martins, A. B., Semir, J., Goldenberg, R., & Martins, E. O. (1996) Gênero Miconia Ruiz and Pav. (Melastomataceae) no Estado de São Paulo. Acta Botanica Brasilica, 10, 267-316.

Mendonça, R. C., Felfili, J. M., Walter, B. M. T., Silva Jr., M. C., Rezende, A. V., Filgueiras, T. S, ... Fagg, C. W. (2008). Flora Vascular do bioma Cerrado: checklist com 12.356 espécies. In S. M. Sano, S. P. Almeida, & J. F. Ribeiro (Eds.), Cerrado: ecologia e flora (pp. 421-1279). Embrapa Cerrados: Brasília.

Mendoza, H. & Ramírez, B. (2006). Guía ilustrada de géneros Melastomataceae y Memecylaceae de Colombia. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Univerisad del Cauca.

Milberg, P., Andersson, L., & Thompson, K. (2000). Large-seeded species are less dependent on light for germination than small-seeded ones. Seed Science Research, 10, 99-104.

Oliveira, P. E. (2008). Fenologia e biologia reprodutiva das espécies de cerrado. In S. M. Sano, & S. P. Almeida. (Eds.), Cerrado: ambiente e flora (pp. 169-192.). Planaltina: EMBRAPA-CPAC.

Oliveira-Filho, A. T., & Ratter, J. A. (2002). Vegetation physiognomies and woody flora of the cerrado biome. In P. S. Oliveira, & R. J. Marquis (Eds.), The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna (pp. 91-120). Washington: Columbia University Press.

Orozco-Segovia, A., Sanchez-Coronado, M. E., & Vázquez-Yanes, C. (1993). Effect of maternal light environment on seed germination in Piper auritum. Functional Ecology, 7(4), 95-402.

Pearson, T. R. H., Burslem, D. F. R. P., Mullins, C. E., & Dalling, J. W. (2002). Germination ecology of neotropical pioneers: interacting effects of environmental conditions and seed size. Ecology, 83, 2798-2807.

Pearson, T. R. H., Burslem, D. F. R. P., Mullins, C. E., & Dalling, J. W. (2003). Functional significance of photoblastic germination in neotropical pioneer trees: a seed's eye view. Functional Ecology, 17, 394-402.

Peng, J., & Harberd, N. P. (2002). The role of GA-mediated signalling in the control of seed germination. Current Opinion in Plant Biology, 5, 376-381.

Petruzzelli, L., & Harren, F. (1997). Alleviation of chilling injury by ethephon in pea sedes. In R. H. Ellis, M. Black, A. J. Murdoch, & T. D. Hong (Eds.), Basic and applied aspects of seed biology. Current plant science and biotechnology in agriculture (Vol. 30, pp. 569-576). Dordrecht: Kluwer Academic Publishers.

Pinheiro, M. H. O. (2006). Composição e estrutura de uma comunidade savânica em gradiente topográfico no município de Corumbataí (SP, Brasil) (Tesis doctoral). Universidade Estadual Paulista, Rio Claro, Brasil.

Pinheiro, M. H. O., Azevedo, T. S. De, & Monteiro, R. (2010). Spatial-temporal distribution of fire-protected savanna physiognomies in Southeastern Brazil. Anais Da Academia Brasileira de Ciências, 82(2), 379-95.

Pons, T. L. (2000). Seed responses to light. In M. Fenner (Ed.), Seeds: The ecology of regeneration in plant communities (2nd ed., pp. 237-260). Walligford: CABI Publishing.

Probert, R. J. (2000). The role of temperature in the regulation of seed dormancy and germination. In M. Fenner (Ed.), Seeds: The ecology of regeneration in plant communities (pp. 261-292). Walligford: CABI Publishing.

Ratter, J. A., Ribeiro, J. F., & Bridgewater, S. (1997). The Brazilian Cerrado vegetation and threats to its biodiversity. Annals of Botany, 80(3), 223-230.

Ray, G. J., & Brown, B. J. (1995). Restoring Caribbean dry forests: evaluation of tree propagation techniques. Restoration Ecology, 3, 86-94.

Salazar, A., Goldstein, G., Franco, A. C., & Miralles-Wilhelm, F. (2011). Timing of seed dispersal and dormancy, rather than persistence in soil seed-banks, control recruitment of woody plants in Neotropical savannas. Seed Science Research, 21, 103-116.

Silveira, F. A. O., Fernandes, G. W., & Lemos-Filho, J. (2013). Seed and Seedling Ecophysiology of Neotropical Melastomataceae: Implications for Conservation and Restoration of Savannas and Rainforests. Annals of the Missouri Botanical Garden, 99(1), 82-99.

Specieslink. (2013, July). Species link. Retrieved from http://splink.cria.org.br/index?criaLANG=pt

Sokal, R. R., & Rolf, F. J. (1995). Biometry: the principles and practice of statistics in biological research (3rd ed.). New York: W.H. Freeman.

Souza, R. P., & Válio, I. F. M. (2001). Seed size, seed germination, and seedling survival of Brazilian Tropical tree species differing in successional status. Biotropica, 33(3), 447-457.

Swaine, M. D., & Whitemore, T. C. (1988). On the definition of ecological species groups in Tropical Rain Forests. Vegetatio, 75(1/2), 81-86.

Vázquez-Yánes, C., & Orozco-Segovia, A. (1990). Ecological significance of light controlled seed germination in two contrasting tropical habitats. Oecologia, 83(2), 171-175.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2015 Revista de Biología Tropical

Downloads

Download data is not yet available.