Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Biomass and total carbon in oak forests of Southern Colombian Andes: contributions to the REDD+ project-wide approach.


aboveground biomass (AGB)
belowground biomass
carbon stocks
carbon sink
tropical mountain forests.
biomasa aérea
biomasa subterránea
bosques tropicales de montaña
reservorios de carbono

How to Cite

Yepes, A., Sierra, A., Niño, L. M., López, M., Garay, C., Vargas, D., Cabrera, E., & Barbosa, A. (2016). Biomass and total carbon in oak forests of Southern Colombian Andes: contributions to the REDD+ project-wide approach. Revista De Biología Tropical, 64(1), 399–412.


Carbon estimations in tropical forests are very important to understand the role of these ecosystems in the carbon cycle, and to support decisions and the formulation of mitigation and adaptive strategies to reduce the greenhouse emission gases (GHG). Nevertheless, detailed ground-based quantifications of total carbon stocks in tropical montane forests are limited, despite their high value in science and ecosystem management (e.g. REDD+). The objective was to identify the role of these ecosystems as carbon stocks, to evaluate the contribution of the pools analyzed (aboveground biomass, belowground biomass and necromass), and to make contributions to the REDD+ approach from the project scale. For this study, we established 44 plots in a heterogeneous landscape composed by old-grown forests located in the Southern Colombian Andes. In each plot, all trees, palms and ferns with diameter (D) ≥ 15 cm were measured. In the case of palms, the height was measured for 40 % of the individuals, following the Colombia National Protocol to estimate biomass and carbon in natural forests. National allometric equations were used to estimate aboveground biomass, and a global equation proposed by IPCC was used for belowground biomass estimation; besides, palms’ aboveground biomass was estimated using a local model. The necromass was estimated for dead standing trees and the gross debris. In the latter case, the length and diameters of the extremes in the pieces were measured. Samples for wood density estimations were collected in the field and analyzed in the laboratory. The mean total carbon stock was estimated as 545.9 ± 84.1 Mg/ha (± S.E.). The aboveground biomass contributed with 72.5 %, the belowground biomass with 13.6 %, and the necromass with 13.9 %. The main conclusion is that montane tropical forests store a huge amount of carbon, similar to low land tropical forests. In addition, the study found that the inclusion of other pools could contribute with more than 20 % to total carbon storage, indicating that estimates that only include the aboveground biomass, largely underestimate carbon stocks in tropical forest ecosystems. These results support the importance of including other carbon pools in REDD+ initiatives’ estimations.


Álvarez, E., Duque, A., Saldarriaga, J. G., Cabrera, K., De las Salas, G., Del Valle, J. I., Moreno, F., Orrego, S. A., & Rodríguez, L. (2012). Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecology and Management, 267, 297-308.

Álvarez, G., García, N. E., Krasilnikov, P., & García, F. (2013). Carbon storage in montane cloud forests in Sierra Norte of Oaxaca, México, Agrociencia, 47, 171-180.

Anaya, J. A., Chuvieco, E., & Palacios-Orueta, A. (2009). Aboveground biomass assessment in Colombia: A remote sensing approach. Forest Ecology and Management, 257, 1237-1246.

Armenteras, D., Gast, F., & Villareal, H. (2003). Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes, Colombia. Biological Conservation, 113, 245-256.

Asner, G. P., Powell, G. V. N., Mascaro, J., Knapp, D. E., Clark, J. K., Jacobson, J., Kennedy-Bowdoin, T., Balaji, A., Paez-Acosta, G., Victoria, E., Secada, L., Valqui, M., & Hughes, R. F. (2010). High-resolution forest carbon stocks and emissions in the Amazon. Proceedings of the National Academy of Sciences, 107, 16738-16742.

Baker, T. R., Honorio, E. N., Phillips, O. L., Martin, J., Van Der Heijden, G. M. F., García, M., & Silva Espejo, J. (2007). Low stocks of coarse woody debris in a southwest Amazonian forest. Oecologia, 152, 495-504.

Bruijnzeel, A., Scatena, F. N., & Hamilton, S. (2011). Tropical Montane Cloud Forests Science for Conservation and Management. New York: Cornell University.

Cairns, M. A., Brown, S., Helmer, E. H., & Baumgardner, G. A. (1997). Root biomass allocation in the world’s upland forest. Oecologia, 111, 1-11.

Chao, K. J., Phillips, O. L., & Bakera, T. R. (2008). Wood density and stocks of coarse woody debris in a northwestern Amazonian landscape. Canadian Journal of Forest Research, 38, 795-805.

Clark, D. A. (2007). Detecting tropical forests responses to global climatic and atmospheric change: current challenges and a way forward. Biotropica, 39, 4-19.

Corporación Autónoma Regional del Alto Magdalena (CAM). 2009. Corredor Biológico Guácharos – Puracé. Proceso participativo para la Conservación del Macizo Colombiano. Bogotá: Panamericana Formas e Impresos.

Culmsee, H., Leuschner, C., Moser, G., & Pitopang, R. (2010). Forest aboveground biomass along an elevational transect in Sulawesi, Indonesia, and the role of Fagaceae in tropical montane rain forests. Journal of Biogeography, 37, 960-974.

Duque, A., Feeley, K. J., Cabrera, E., Callejas, R., & Idarraga, A. (2014). The dangers of carbon-centric conservation for biodiversity: a case study in the Andes. Tropical Conservation Science, 7(2), 178-191. Recuperado de

Gardner, T. A., Burgess, N. B., Aguilar-Amuchastegui, N., Barlow, J., Berenguer, E., Clements, T., Danielsen, F., Ferreira, J., Foden, W., Kapos, V., Khan, S. M., Leesm, A. S., Parry, L., Roman-Cuesta, R. M., Schmitt, C. B., Strange, N., Theilade, I., & Vieiram, I. C. G. (2012). A framework for integrating biodiversity concerns into national REDD+ programmes. Biological Conservation, 154, 61-71.

Girardin, C. A. J., Farfan-Rios, W., Garcia, K., Feeley, K. J., Jørgensen, P. M., Araujo Murakami, A., Cayola Pérez, L., Seidel, R., Paniagua, N., Fuentes Claros, A. F., Maldonado, C., Silman, M., Salinas, N., Reynel, C., Neill, D. A., Serrano, M., Caballero, C. J., La Torre Cuadros, M. D. L. A., Macía, M. J., Killeen, T. J., & Malhi, Y. (2013). Spatial patterns of above-ground structure, biomass and composition in a network of six Andean elevations transects. Plant Ecology & Diversity, 1-13.

González, J. J., Etter, A. A., Sarmiento, A. H., Orrego, S. A., Ramírez, C., Cabrera, E., Vargas, D., Galindo, G., García, M. C., Ordoñez, M. F. (2011). Análisis de tendencias y patrones espaciales de deforestación en Colombia. Bogotá: Editorial Scripto.

González, Y., Coca, A., & Cantillo, E. (2007). Estructura y composición florística de la vegetación del Corredor Biológico entre los Parques Nacionales Naturales Puracé y Cueva de los Guácharos. Revista Colombia Forestal, 10, 40-78.

Houghton, R. A., Lawrence, K. L., Hackler, J. L., & Brown, S. (2001). The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates. Global Change Biology, 7, 731-746.

Ifo, A. S., Koubouana, F., Jourdain, C., & Nganga, D. (2015). Stock and Flow of Carbon in Plant Woody Debris in Two Different Types of Natural Forests in Bateke Plateau, Central Africa. Open Journal of Forestry, 5, 38-47.

Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM. (2005). Atlas Climatológico de Colombia. Bogotá, Colombia.

Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM. (2014). AT-Deforestación No.3. Octubre 2014. Bogotá, Colombia.

Kindermann, G., Obersteiner, M., Sohngen, B., Sathaye, J., Andrasko, K., Rametsteiner, E., Schlamadinger, B., Wunder, S., & Beach, R. (2008). Global cost estimates of reducing carbon emissions through avoided deforestation. Proceedings of the National Academy of Sciences, 105, 10302-10307.

Langner, A., Achard, F., & Grassi, G. (2014). Can recent pan-tropical biomass maps be used to derive alternative Tier 1 values for reporting REDD+ activities under UNFCCC? Environmental Research Letters, 9, 1-13.

Larjavaara, M., & Muller-Landau H. C. (2013). Measuring tree height: a quantitative comparison of two common field methods in a moist tropical forest. Methods in Ecology and Evolution, 13, 320-328.

León, J. D., Vélez, G., & Yepes, A. P. (2009). Estructura y composición florística de tres robledales en la región norte de la cordillera central de Colombia. Revista de Biología Tropical, 57(4), 1165-1182.

Lewis, S. L., Sonke, B., Sunderland, T., Begne, S. K., Lopez-Gonzalez, G., van der Heijden, G. M. F., Phillips, O. L., Affum-Baffoe, K., Baker, T. R., Banin, L., Bastin, J. F., Beeckman, H., Boeckx, P., Bogaert, J., De Canniere, C., Chezeaux, E., Clark, C. J., Collins, M., Djagbletey, G., Djuikouo, M. N. K., Droissart, V., Doucet, J. L., Ewango, C. E. N., Fauset, S., Feldpausch, T. R., Foli, E. G., Gillet, J. F., Hamilton, A. C., Harris, D. J., Hart, T. B., de Haulleville, T., Hladik, A., Hufkens, K., Huygens, D., Jeanmart, P., Jeffery, K. J., Kearsley, E., Leal, M. E., Lloyd, J., Lovett, J. C., Makana, J. R., Malhi, Y., Marshall, A. R., Ojo, L., Peh, K. S. H., Pickavance, G., Poulsen, J. R., Reitsma, J. M., Sheil, D., Simo, M., Steppe, K., Taedoumg, H. E., Talbot, J., Taplin, J. R. D., Taylor, D., Thomas, S. C., Toirambe, B., Verbeeck, H., Vlem-inckx, J., White, L. J. T., Willcock, S., Woell, H., & Zemagho, L. (2013). Above-ground biomass and structure of 260 African tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 1-14.

Macdicken, K. G. (1997). A guide to monitoring carbon storage in forestry and agroforestry projects. Winrock International Institute for Agricultural Development, Forest Carbon Monitoring Program,Virginia, USA.

Malhi, Y., Wood, D., Baker, T. R., Wright, J., Phillips, O. L., Cochrane, T., Meir, P., Chave, J., Almeida, S., Arroyo, L., Higuchi, N., Killeen, T. J., Laurance, S. G., Laurance, W. F., Lewis, S. L., Monteagudo, A., Neill, D. A., Núñez, P., Pitman, N. C., Quesada, C. A., Salomão, R., Silva, J. N., Torres, A., Terborgh, J., Vásquez, R., & Vinceti, B. (2006). The regional variation of aboveground live biomass in old-growth Amazonian forests. Global Change Biology, 12, 1107-1138.

Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853-858.

Navarrete, D. A., Duque, A. J., Yepes, A. P., Phillips, J. F., Cabrera, K. R., López, E. W., Rivera, C. M., García, M. C., & Ordoñez, M. F. (2011). Madera muerta: un reservorio de carbono en bosques naturales de Colombia. Validación metodológica para su medición en el marco de proyectos REDD+. Instituto de Hidrología, Meteorología, y Estudios Ambientales-IDEAM-Bogotá: Editorial Scripto.

Ngo, K. M., Turner, B. L., Muller-Landau, H. C., Davies, S. J., Larjavaara, M., & Hassan, N. F. N., & Lum, S. (2013). Carbon stocks in primary and secondary tropical forests in Singapore. Forest Ecology and Management, 296, 81-89.

Nogueira, E. M., Fearnside, P. M., Nelson, B. W., Barbosa, R. I., & Keizer, E. W. H. (2008). Estimates of forest biomass in the Brazilian Amazon: New allometric equations and adjustments to biomass from wood-volume inventories. Forest Ecology and Management, 256, 1853-1867.

Omoro, L. M. A., Starr, M., & Pellikka, P. K. E. (2013). Tree biomass and soil carbon stocks in indigenous forests in comparison to plantations of exotic species in the Taita Hills of Kenya. Silva Fennica, 47(2), 1-18.

Parra, C. A., Díez, M. C., & Moreno, F. H. (2011). Regeneración Natural del Roble Negro (Colombobalanus excelsa, Fagaceae) en dos Poblaciones de la Cordillera Oriental de los Andes, Colombia. Revista Facultad Nacional de Agronomía Medellín, 64(2), 6175-6189.

Pedroni, L. (2012). Methodology for Avoided Unplanned Deforestation. VM0015. Version 1.1. diciembre 3.

Phillips, J. F., Duque, A. J., Cabrera, K. R., Yepes, A. P., Navarrete, D. A., García, M. C., Álvarez, E., Cabrera, E., Cárdenas, D., Galindo, G., Ordóñez, M. F., Rodríguez, M. L., & Vargas, D. M. (2011). Estimación de las reservas potenciales de carbono almacenadas en la biomasa aérea en bosques naturales de Colombia. Instituto de Hidrología, Meteorología, y Estudios Ambientales-IDEAM-Bogotá: Editorial Scripto.

Phillips, J. F., Duque, A. J., Galindo, G., Cabrera, E., Peña, M. A., Scott, C., Álvarez, E., & Cárdenas, D. (2014). Aportes técnicos del Sistema de Monitoreo de Bosques y Carbono a la propuesta de preparación de Colombia para REDD+: datos de actividad y factores de emisión (Informe final). Instituto de Hidrología, Meteorología, y Estudios Ambientales (IDEAM). Bogotá: Editorial Scripto.

Phillips, O. L., & Gentry, A. H. (1994). Increasing turnover through time in tropical forest. Science, 263, 954-958.

Powers, J. S., Montgomery, R. A., Adair, E. C., Brearley, F. Q., DeWalt, S. J., Castanho, C. T., Chave, J., Deinert, E., Ganzhorn, J. U., Gilbert, M. E., González-Iturbe, J. A., Bunyavejchewin, S., Grau, H. R., Harms, K. E., Hiremath, A., Iriarte-Vivar, S., Manzane, E., De Oliveira, A. A., Poorter, L., Ramanamanjato, J. B., Salk, C., Varela, A., Weiblen, G. D., & Lerdau, M. T. (2009), Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. Journal of Ecology, 97, 801-811.

R Development Core Team. (2010). R: A Language and Environment for Statistical Computing. Version 2.10.1 Patched. The R Foundation for Statistical Computing. Vienna, Austria. Recuperado de

Richter, M. (2008). Tropical mountain forest - distribution and general features. In S. R. Grandstein, J. Homeier, & D. Gansert (Eds.), The tropical montane forest. Patterns and processes in a biodiversity hotspot (pp. 7-24). Göttingen: Göttingen Centre for Biodiversity and Ecology, Universitätsverlag Göttingen.

Saatchi, S. S., Harris, N. L., Brown, S. S., Lefskyd, M., Mitchard, E. T. A., Salasf, W., Zutta, B. R., Buermann, W., Lewis, S. L., Hagen, S., Petrovac, S., Whiteh, L., Silmani, M., & Morel, A. (2011). Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences, 108, 9899-9904.

Sanford, R. L., & Cuevas, E. (1996). Root growth and rhizosphere interactions in tropical forests. In S. S. Mulkey, R. L. Chazdon & A. P. Smith (Eds.), Tropical Forest Plant Ecophysiology. New York: Chapman & Hall.

Sierra, C. A., Del Valle, J. I., Orrego, S. A., Moreno, F. H., Harmon, M. E., Zapata, M., Colorado, G. J., Herrera, M. A., Lara, W., Restrepo, D. E., Berrouet, L. M., Loaiza, L. M., & Benjumea, J. F. (2007). Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. Forest Ecology and Management, 243, 299-309.

Slik, J. W. F., Aiba, S. I., Brearley, F. Q., Cannon, C. H., Forshed, O., Kitayama, K., Nagamasu, H., Nilus, R., Payne, J., Paoli, G., Poulsen, A. D., Raes, N., Sheil, D., Sidiyasa, K., Suzuki, E., & Valkenburg, J. L. C. H. (2010). Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo’s tropical forests. Global Ecology and Biogeography, 19, 50-60.

Slik, J. W. F., Paoli, G., Mcguire, K., Amaral, I., Barroso, J., Bastian, M., Blanc, L., Bongers, F., Boundja, P., Clark, C., Collins, M., Dauby, G., Ding, Y., Doucet, J. L., Eler, E., Ferreira, L., Forshed, O., Fredriksson, G., Gillet, J. F., Harris, D., Leal, M., Laumonier, Y., Malhi, Y., Mansor, A., Martin, E., Miyamoto, K., Araujo-Murakamim, A., Nagamasu, H., Nilus, R., Nurtjahya, E., Oliveira, Á., Onrizal, O., Parada-Gutierrez, A., Permana, A., Poorter, L., Poulsen, J., Ramirez-Angulo, H., Reitsma, J., Rovero, F., Rozak, A., Sheil, D., Silva-Espejo, J., Silveira, M., Spironelo, W., Ter Steege, H., Stevart, T., Navarro-Aguilar, G. E., Sunderland, T., Suzuki, E., Tang, J., Theilade, I., van der Heijden, G., van Valkenburg, J., Van do, T., Vilanova, E., Vos, V., Wich, S., Wöll, H., Yoneda, T., Zang, R., Zhang, M. G., & Zweifel, N. (2013). Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 22, 1261-1271.

Spracklen, D. V., & Righelato, R. (2013). Tropical montane forests are a larger than expected global carbon store. Biogeosciences Discuss, 10, 18893-18924.

UNFCCC (2014). Submissions from Parties on proposed forest reference emission levels and/or forest reference levels for the implementation of the activities referred to in decision 1/CP.16, paragraph 70.

Van Der, J., Shoo, L. P., & Williams, S. E. (2009). New approaches to understanding late Quaternary climate fluctuations and refugial dynamics in Australian wet tropical rain forests. Journal of Biogeography, 36, 291-301.

Venter, O., Laurance, W. F., Iwamura, T., Wilson, K. A., Fuller, R. A., & Possingham, H. A. (2009). Harnessing Carbon Payments to Protect Biodiversity. Science, 326, 1368.

Wilcke, W., Hess, T., Bengel, C., Homeier, J., Valarezo, C., & Zech, W. (2005). Coarse woody debris in a mountain forest in Ecuador: mass, C and nutrient stock, and turnover. Forest Ecology and Management, 205, 139-147.

Yepes, A., Herrera, J., Phillips, J., Cabrera, E., Granados, E., Duque, A., Barbosa, A., Olarte, C., & Cardona, M. (2015). Contribución de los bosques tropicales de montaña en el almacenamiento de carbono en Colombia. Revista de Biología Tropical, 63, 69-82.

Zanne, A. E., López-González, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, M. C., & Chave, J. (2009). Data from: Towards a worldwide wood economics spectrum. Dryad Digital Repository.



Download data is not yet available.