Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Two-year temporal response of benthic macrofauna and sediments to hypoxia in a tropical semi-enclosed bay (Cienfuegos, Cuba)

Supplementary Files



oxygen deficiency
organic enrichment
redox potential
Caribbean Sea.
deficiencia de oxígeno
enriquecimiento orgánico
potencial redox
Mar Caribe.

How to Cite

Díaz Asencio, L., Helguera, Y., Fernández-Garcés, R., Gómez-Batista, M., Rosell, G., Hernández, Y., Pulido, A., & Armenteros, M. (2016). Two-year temporal response of benthic macrofauna and sediments to hypoxia in a tropical semi-enclosed bay (Cienfuegos, Cuba). Revista De Biología Tropical, 64(1), 177–188.


Hypoxia is the depletion of dissolved oxygen below 2 mg O2/L. Relatively few studies on hypoxia and its effects on benthic macrofauna have been done in tropical marine ecosystems. This study describes the temporal response of the water column, sediments and macrofauna to seasonal hypoxia in a semi-enclosed bay (Cienfuegos, Caribbean Sea). The Calisito site was sampled monthly from June 2010 until February 2012, yielding 21 sampling times. At each sampling event water and sediment samples were collected for measuring the abiotic variables (temperature, salinity, dissolved oxygen, nutrients, redox potential discontinuity, silt/clay and organic matter content) and macrofauna (abundance and species richness). Temperature and surface salinity followed a typical temporal pattern during the summer/rainy and the winter/dry periods. Salinity stratification occurred in the rainy period, lasting three months in 2010 and six months in 2011. The bottom water dissolved oxygen indicated hypoxic and anoxic events during the wet periods of 2010 and 2011 associated with salinity stratification, low hydrodynamics and oxidation of the accumulated organic matter. Over the study period, 817 individuals were collected and identified. Polychaetes were the dominant group in terms of abundance (57 % of total) followed by mollusks (41%). Hypoxia (and occasionally anoxia) caused strong deleterious effects on the abundance and species richness of macrofaunal communities in the study site. The most abundant polychaetes were opportunistic species with high tolerance to hypoxic conditions: Prionospio steenstrupi, Polydora sp.and Paraprionospio pinnata. Most of them colonized relatively fast once hypoxia ended. Persistent species such as Caecum pulchellum and Parvanachis obesa were present during hypoxia with fluctuating densities and apparently recover to higher abundances when normoxic conditions are re-established. Macoma tenta and Tellina consobrina colonized approximately 1-2 months later than the first polychaete peak during normoxia. Probably, the deleterious effects of hypoxia on the macrofauna were intensified by negative interspecific relationships such as competition by suitable space and predation. The recolonization of macrofauna depended possibly on local transport by currents within the bay because the connection with the Caribbean Sea is relatively limited. In summary, seasonal hypoxia in Cienfuegos Bay influences the water and sediment geochemistry and reduces both the abundance and diversity of macrofauna.


Abbott, R. (1974). American Seashells. 2nd edition, Van Nostrand Reinhold: New York.

Anonymous (2000). Informe Final de Proyecto: Manejo Integrado de la Bahía de Cienfuegos. Programa Territorial Científico - Técnico de Medio Ambiente de la Provincia de Cienfuegos.

APHA (1998). Standard methods for the examination of water and wastewater 20th Edition. APHA-AWWA-WPCF, Washington DC.

ASTM (1992). Annual Book of ASTM Standards, Vol. 11.01.American Society for Testing and Materials, Philadelphia.

Bricker, S. B., Ferreira J. G., & Simas, T. (2003). An integrated methodology for assessment of estuarine trophic status. Ecological Modelling, 169, 39-60.

Cheng, P., Valle-Levinson, A., Winant, C. D., Ponte, A. L. S., Gutierrez de Velasco, G., & Winters, K. B. (2010). Upwelling-enhanced seasonal stratification in a semiarid bay. Continental Shelf Research, 30, 1241-1249.

Clarke, K. R., & Gorley, R. N. (2006). Primer v6: User manual/tutorial. Primer-E, Ltd: Plymouth.

Colwell, R. K. (2006). EstimateS: Statistical estimation of species richness and shared species from samples. Version 8.

Díaz-Asencio, L., Armenteros, M., Díaz-Asencio, M., Fernández-Garcés, R., Gómez-Batista, M., & Alonso-Hernández, C. (2009). Spatial and temporal variations of meiofaunal communities in Cienfuegos Bay, Cuba. Revista de Biología Marina y Oceanografía, 44, 13-22.

Díaz, R. J., & Rosenberg, R. (1995). Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology. An Annual Review, 33, 245-303.

Díaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321, 926-929.

Fenchel, T., & Riedl, R. J. (1970). The sulfide system: a new biotic community underneath the oxidized layer of marine sand bottoms. Marine Biology, 7, 255-268.

Foster, N. M. (1971). Spionidae (Polychaeta) of the Gulf of Mexico and the Caribbean Sea. Studies of the fauna of Curacao and other Caribbean Islands, 37, 1-138.

Grassle, J. F., & Grassle, J. P. (1974). Opportunistic life histories and genetic systems in marine benthic polychaetes. Journal of Marine Research, 32, 253-284.

Gray, J. S., Shiu-sun Wu, R., & Ying Or, Y. (2002). Effects of hypoxia and organic enrichment on the coastal marine environment. Marine Ecology Progress Series, 238, 249-279.

Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25, 101-110.

Helguera, Y., Díaz-Asencio, L., Fernández-Garcés, R., Gómez-Batista, M., Guillén, A., Díaz-Asencio, M., & Armenteros, M. (2011). Distribution patterns of macrofaunal polychaete assemblages in a polluted semi-enclosed bay: Cienfuegos, Caribbean Sea. Marine Biology Research, 7, 757-768.

Howarth, R., Chan, F., Conley, D. J., Garnier, J., Doney, S. C., Marino, R., & Billen, G. (2011). Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Frontiers in Ecology and the Environment, 9, 18-26.

Jacinto, G. S., Sotto, L. P. A., Senal, M. I. S., San Diego-McGlone, M. L., Escobar, M. T. L., Amano, A., & Miller, T. W. (2011). Hypoxia in Manila Bay, Philippines during the northeast monsoon. Marine Pollution Bulletin, 63, 243-248.

Levin, L. A., Ekau, W., Gooday, A. J., Jorissen, F., Middelburg, J. J., Naqvi, W., Neira, C., Rabalais, N. N., & Zhang, J. (2009). Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences, 6, 3563-3654.

Loring, D. H., & Rantala, R. T. T. (1992). Manual for the geochemical analysis of marine sediments and suspended particulate matter. Earth Science Review, 32, 235-83.

Muñoz, A., Douillet, P., Díaz-García, O., Fichez, R., Herrera, R. H., Alcántara-Carrió, J., & García, A. (2012). Flushing time in the Cienfuegos Bay, Cuba. Natural Resources Modeling, 25, 434-455.

Muñoz, A., Douillet, P., Díaz-García, O., Ouillon, S., & Fichez, R. (2008). Influencia de la marea, el viento y el aporte fluvial en la circulación de las aguas de la Bahía de Cienfuegos, Cuba. Revista de Investigaciones Marinas, 29, 101-112.

Pearson, T. H., & Rosenberg, R. (1978). Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology. An Annual Review, 16, 229-311.

Rabalais, N. N., Diaz, R. J., Levin, L. A., Turner, R. E., Gilbert, D., & Zhang, J. (2010). Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences, 7, 585-619.

Redfern, C. (2001). Bahamian seashells. A thousand species from Abaco, Bahamas. Boca Raton.

Rosenberg, R., Agrenius, S., Hellman, B., Nilsson, H. C., & Norling, K. (2002). Recovery of marine benthic habitats and fauna in a Swedish fjord following improved oxygen conditions. Marine Ecology Progress Series, 234, 43-53.

Seisdedo, M. (2006). Variaciones espaciales y temporales en indicadores de la calidad ambiental de las aguas de la Bahía de Cienfuegos, Cuba. Revista de Investigaciones Marinas, 27, 159-164.

Seitz, R. D., Dauer, D. M., Llansó, R. J., & Long, C. (2009). Broad-scale effects of hypoxia on benthic community structure in Chesapeake Bay, USA. Journal of Experimental Marine Biology and Ecology, 381, S4-S12.

Tomczak, M., & García-Díaz, C. (1975). A numerical model of the circulation in Cienfuegos Bay, Cuba. Estuarine and Coastal Marine Science, 3, 391-412.

Vaquer-Sunyer, R., & Duarte, C. M. (2008). Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 105, 15452-15457.

Vaquer-Sunyer, R., & Duarte, C. M. (2010). Sulfide exposure accelerates hypoxia-driven mortality. Limnology and Oceanography, 55, 1075-1082.

Yoshino, K., Hamada, T., Yamamoto, K., Hayami, Y., Yamaguchi, S., & Ohgushi, K. (2010). Effects of hypoxia and organic enrichment on estuarine macrofauna in the inner part of Ariake Bay. Hydrobiologia, 652, 23-38.

Zhang, J., Gilbert, D., Gooday, A. J., Levin, L. A., Naqvi, S. W. A., Middelburg, J. J., Scranton, M., Ekau, W., Peña, A., Dewitte, B., Oguz, T., Monteiro, P. M. S., Urban, E. R., Rabalais, N. N., Ittekkot, V., Kemp, W. M., Ulloa, O., Elmgren, R., Escobar-Briones, E., & Van der Plas, A. K. (2010). Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development. Biogeosciences, 7, 1443-1467.



Download data is not yet available.