Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Habitat conditions drive phylogenetic structure of dominant bacterial phyla of microbialite communities from different locations in Mexico
PT 64-3 set 2016


Community assembly
community composition
heterotrophic bacteria
Ensamble comunitario
composición comunitaria
bacterias heterotróficas

How to Cite

Centeno, C. M., Mejía, O., & Falcón, L. I. (2016). Habitat conditions drive phylogenetic structure of dominant bacterial phyla of microbialite communities from different locations in Mexico. Revista De Biología Tropical, 64(3).


Community structure and composition are dictated by evolutionary and ecological assembly processes which are manifested in signals of, species diversity, species abundance and species relatedness. Analysis of species coexisting relatedness, has received attention as a tool to identify the processes that influence the composition of a community within a particular habitat. In this study, we tested if microbialite genetic composition is dependent on random events versus biological/abiotical factors. This study was based on a large genetic data set of two hypervariable regions (V5 and V6) from previously generated barcoded 16S rRNA amplicons from nine microbialite communities distributed in Northeastern, Central and Southeastern Mexico collected in May and June of 2009. Genetic data of the most abundant phyla (Proteobacteria, Planctomycetes, Verrucomicrobia, Bacteroidetes, and Cyanobacteria) were investigated in order to state the phylogenetic structure of the complete communities as well as each phylum. For the complete dataset, Webb NTI index showed positive and significant values in the nine communities analysed, where values ranged from 31.5 in Pozas Azules I to 57.2 in Bacalar Pirate Channel; meanwhile, NRI index were positive and significant in six of the nine communities analysed with values ranging from 18.1 in Pozas Azules I to 45.1 in Río Mesquites. On the other hand, when comparing each individual phylum, NTI index were positive and significant in all groups, except in Cyanobacteria for which positive and significant values were only found in three localities; finally, NRI index was significant in only a few of the comparisons performed. The results suggest that habitat filtering is the main process that drives phylogenetic structure in bacterial communities associated to microbialites with the exception of Cyanobacteria where different lineages can contribute to microbialite formation and growth.


Allwood, A. C., Walter, M. R., Kamber, B. S., Marshall, C. P., & Burch, I. W. (2006). Stromatolite reef from the Early Archaean era of Australia. Nature, 441(7094), 714-718.

Amaral-Zettler, L. A., Zettler, E. R., Theorux, S. M., Palacios, C., Aguilera, A., & Amils, R. (2011). Community structure across the tree of life in the extreme Río Tinto. The ISME Journal, 5(1), 42-50.

Armitage, D. W., Gallagher, K. L., Youngblut, N. D., Buckley, D. H., & Zinder, S. H. (2012). Millimeter-scale patterns of phylogenetic and trait diversity in a salt marsh microbial mat. Frontiers in Microbiology, 3, 293.

Barberán, A., & Casamayor, E. O. (2010). Global phylogenetic community structure and β diversity patterns in surface bacterioplankton metacommunities. Aquatic Microbial Ecology, 59(1), 1-10.

Baumgartner, L. K., Spear, J. R., Buckley, D. H., Pace, N. R., Reid, R. P., Dupraz, C., & Visscher, P. T. (2009). Microbial diversity in modern marine stromatolites, Highborne Cay, Bahamas. Environmental Microbiology, 11(10), 2710-2719.

Boc, A., Diallo, A. B., & Makarenkov, V. (2012). T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Research, 40(W1), W573-W579.

Bolhuis, H., & Stal, L. J. (2011). Analysis of bacterial and archaeal diversity in coastal microbial mats using massive parallel 16S rRNA gene tag sequencing. The ISME Journal, 5(11), 1701-1712.

Bryant, J. A., Lamanna, C., Morlon, H., Kerkhoff, A. J., Enquist, B. J., & Green, J. L. (2008). Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity. Proceedings of the National Academy of Sciences USA, 105(Suppl. 1), 11505-11511.

Burne, R., & Moore, L. (1987). Microbialites: Organosedimentary Deposits of Benthic Microbial Communities. Palaios, 2(3), 241-254.

Caruso, T., Chan, Y., Lacap, D. C., Lau, M., McKay, C. P., & Pointing, S. B. (2011). Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. The ISME Journal, 5(9), 1406-1413.

Centeno, C. M., Legendre, P., Beltrán, Y., Alcántara-Hernández, R. J., Lidström, U., Ashby, M., & Falcón, L. I. (2012). Microbialite genetic diversity and composition related to environmental variables. FEMS Microbiology Ecology, 82(3), 724-735.

Chase, J. M. (2010). Stochastic Community Assembly Causes Higher Biodiversity in More Productive Environments. Science, 328(5984), 1388-1391.

Chong, C. W., Pearce, D. A., Convey, P., Yew, W. C., & Tan, I. K. (2012). Patterns in the distribution of soil bacterial 16S rRNA gene sequences from different regions of Antarctica. Geoderma, 181(2012), 45-55.

Dinger, E. C., Hendrickson, D. A., Winsborough, B. M., & Marks, J. C. (2006). Role of fish in structuring invertebrates on stromatolites in Cuatro Cienegas, Mexico. Hydrobiology, 563(1), 407-420.

Dupraz, C., & Visscher, P. T. (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiology, 13(9), 429-438.

Fierer, N., & Lennon, J. T. (2011). The generation and maintenance of diversity in microbial communities. American Journal of Botany, 98(3), 439-448.

Foster, J. S., Green, S. J., Ahrendt, S. R., Golubic, S., Reid, R. P., Hetherington, K., & Bebout, L. (2009). Molecular and morphological characterization of cyanobacterial diversity in the stromatolites of Highborne Cay, Bahamas. The ISME Journal, 3(5), 573-87.

Harris, J. K., Caporaso, J. G., Walker, J. J., Spear, J. R., Gold, N. J., Robertson, C. E., … Pace, N. R. (2013) Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. The ISME Journal, 7(1), 50-60.

Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C., & Martiny, B. H. (2012). Beyond biogeographic patterns: processes shaping the microbial landscape. Nature Reviews Microbiology, 10(7), 497-506.

HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M., & Mayfield, M. M. (2012). Rethinking community assembly trough the lens of coexistence theory. Annual Review of Ecology and Systematics, 43, 227-248.

Horner-Devine, M. C., & Bohannan, J. M. (2006). Phylogenetic clustering and overdispersion in bacterial communities. Ecology, 87(7), S100-108.

Jones, R. T., Robeson, M. S., Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analysis. The ISME Journal, 3(4), 442-453.

Letcher, S. G. (2010), Phylogenetic structure of angiosperm communities during tropical forest succession. Proceedings of the Royal Society B, 277(1678), 97-104.

Ley, R. E., Harris, J. K., Wilcox, J., Spear, J. R., Miller, S. R., Bebout, B. M., … Pace, N. R. (2006). Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Applied and Environmental Microbiology, 72(5), 3685-95.

Makhalanyane, T. P., Valverde, A., Lacap, D. C., Pointing, S. B., Tuffin, M. I., & Cowan, D. A. (2013). Evidence of species recruitment and development of hot desert hypolithic communities. Environmental Microbiology Reports, 5(2), 219-224.

Martiny, J. B., Bohannan, B. J., Brown, J. H., Colwell, R. K., Fuhrman, J. A., Green, J. L., … Staley, J. T. (2006). Microbial biogeography: putting microorganisms on the map. Nature Reviews Microbiology, 4(2), 102-112.

Mobberley, J. M., Ortega, M., & Foster, J. S. (2012). Comparative diversity analyses of modern marine thrombolites by barcoded pyrosequencing. Environmental Microbiology, 14(1), 82-100.

Olsen, G. (1990). "Newick's 8:45" Tree Format Standard. Retrieved from

Papineau, D., Walker, J. J., Mojzsis, S. J., & Pace, N. R. (2005). Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Applied and Environmental Microbiology, 71(8), 4822-4832.

Pérez-Gutiérrez, R. A., López-Ramírez, V., Islas, A., Alcaraz, L. D., Hernández-González, I., Olivera, B. C., … Olmedo-Álvarez, G. (2013). Antagonism influences assembly of a Bacillus guild in a local community and is depicted as a food-chain network. The ISME Journal, 7(3), 487-497.

Pholchan, M. K., Baptista, J., Davenport, R. J., Sloan, W., & Curtis, T. P. (2013). Microbial community assembly, theory and rare functions. Frontiers in Microbiology, 4(68).

Pontarp, M., Canbäck, B., Tunlid, A., & Lundberg, P. (2012). Phylogenetic Analysis Suggests That Habitat Filtering Is Structuring Marine Bacterial Communities Across the Globe. Microbial Ecology, 64(1), 8-17.

Pontarp, M., Ripa, J., & Lundberg, P. (2012). On the origin of phylogenetic structure in competitive metacommunities. Evolutionary Ecology Research, 14(3), 269-284.

Pontarp, M., Sjöstedt, J., & Lundberg, P. (2013). Experimentally induced habitat filtering in marine bacterial communities. Marine Ecology Progress Series, 477(77), 77-86.

Pringault, O., De Wit, R., & Camoin G. (2005). Irradiance regulation of photosynthesis and respiration in modern marine microbialites built by benthic cyanobacteria in a tropical lagoon (New Caledonia). Microbial Ecology, 49(4), 604-616.

Reid, R. P., Visscher, P. T., Decho, A. W., Stolz, J. F., Bebout, B. M., Dupraz, C., … DesMarais, D. J. (2000). The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature, 406(6799), 989-992.

Saghaï, A., Zivanovic, Y., Zeyen, N., Moreira, D., Benzerara, K., Bertolino, P., … López-García, P. (2015). Metagenome-based diversity analyses suggest a significant contribution of non-cyanobacterial lineages to carbonate precipitation in modern microbialites. Frontiers in Microbiology, 6(797).

Schneider, D., Arp, G., Reimer, A., Reitner, J., & Daniel, R. (2013). Phylogenetic Analysis of a Microbialite-Forming Microbial Mat from a Hypersaline Lake of the Kiritimati Atoll, Central Pacific. PLoS ONE, 8, e66662.

Stegen, J. C., Lin, X., Konopka, A. E., & Fredrickson, J. K. (2012). Stochastic and deterministic assembly processes in subsurface microbial communities. The ISME Journal, 6(9), 1653-1664.

Stegen, J. C., Lin, X., Fredrickson, J. K., Chen, X., Kennedy, D. W., Murray, C. J., … Konopka, A. (2013). Quantifying community assembly processes and identifying features that impose them. The ISME Journal, 7(11), 2069-2079.

Stomeo, F., Valverde, A., Pointing, S. B., McKay, C. P., Warren-Rhodes, K. A., Tuffin, M. I., & Cowan, D. A. (2013). Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert. Extremophiles, 17(2), 329-337.

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Reserarch, 25(24), 4876-4882.

Webb, C. O. (2000). Exploring the Phylogenetic Structure of Ecological Communities: An Example for Rain Forest Trees. American Naturalist, 156(2), 145-155.

Webb, C. O., Ackerly, D. D., McPeek, M. A., & Donoghue, M. J. (2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505.

Webb, C. O., Ackerly, D. A., & Kembel, S. W. (2008). Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24(18), 2098-2100.

Westphal, H., Heindel, K., Brandano, M., & Peckmann, J. (2010). Genesis of microbialites as contemporaneous framework components of deglacial coral reefs, Tahiti (IODP 310). Facies, 56(3), 337-352.

Zhou, J., Bruns, M. A., & Tiedje, J. M. (1996). DNA recovery from soils of diverse composition. Applied and Environmental Microbiology, 62(2), 316-322.



Download data is not yet available.