Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Concentrations of alkaloids, cyanogenic glycosides, polyphenols and saponins in selected medicinal plants from Ecuador and their relationship with acute toxicity against Artemia salina.
PT 64-3 set 2016
PDF (Español (España))
HTML (Español (España))


secondary metabolites
Taraxacum officinale
Parthenium hysterophorus
Artemisia absinthium
Cnidoscolus aconitifolius
Piper carpunya.
Metabolitos secundarios
Taraxacum officinale
Parthenium hysterophorus
Artemisia absinthium
Cnidoscolus aconitifolius
Piper carpunya.

How to Cite

Jaramillo-Jaramillo, C., Jaramillo-Espinoza, A., D’Armas, H., Troccoli, L., & Rojas de Astudillo, L. (2016). Concentrations of alkaloids, cyanogenic glycosides, polyphenols and saponins in selected medicinal plants from Ecuador and their relationship with acute toxicity against Artemia salina. Revista De Biología Tropical, 64(3).


Alkaloids, polyphenols, cyanogenic glycosides and saponins are among the main chemical compounds synthesized by plants but not considered essential for their basic metabolism. These compounds have different functions in plants, and have been recognized with medicinal and pharmacological properties. In this research, concentrations of the mentioned secondary metabolites were determined in the medicinal plants Artemisia absinthium, Cnidoscolus aconitifolius, Parthenium hysterophorus, Piper carpunya and Taraxacum officinale, from Ecuador, and related with cytotoxic effects against Artemia salina. Alcoholic and aqueous extracts from leaves of these selected plants were prepared at different concentrations. To assess cytotoxicity of these extracts, different bioassays with A. salina were undertaken, and the mortality rates and LC50 were obtained. Besides, concentrations of alkaloids, cyanogenic glycosides, phenols, tannins and saponins were determined by spectrophotometric methods; this constituted the first report of quantification of secondary metabolites in the selected plants from Ecuador. T. officinale had the highest concentration of total phenols (22.30 ± 0.23 mg/g) and tannins (11.70 ± 0.10 mg/g), C. aconitifolius of cyanogenic glycosides (5.02 ± 0.37 µg/g) and P. hysterophorus of saponins (6.12 ± 0.02 mg/g). Tannins values obtained were not adverse to their consumption. Alcoholic and aqueous extracts of selected plants had hemolytic activity depending on the concentration of saponins. Although the values of cyanogenic glycosides were permissible, it was necessary to monitor the presence of this metabolite in plants to minimize health problems. LC50 values ranged from extremely toxic (3.37 µg/mL) to highly toxic (274.34 μg/mL), in P. carpunya and T. officinale, respectively. From correlation analysis, it was observed that increase values of alkaloids concentrations had highly significant (p<0.001) acute toxicity against A. salina, while at a higher polyphenol concentration the level of plants cytotoxicity decreased significantly (p<0.001). The results of principal component analysis showed that saponins apparently were in synergy with polyphenols to decrease cytotoxicity, but antagonize with alkaloids and cyanogenic glycosides, indicating that these secondary metabolites present variability in the mechanisms of action against A. salina, as cytotoxic compounds. These results also demonstrate that polyphenols and saponins can be lethal at low concentrations, demonstrating the potential of brine shrimp bioassay as a model to evaluate plant extracts containing low concentrations of chemical compounds with high polarities. The significant positive correlation between cytotoxicity and concentration of alkaloids confirmed by the bioassay of brine shrimp can be useful to identify promising sources of antitumor compounds, and to evaluate tolerable limits not affecting other benign cells. Contents of secondary metabolites found in the selected plants confer them great pharmacologic values.
PDF (Español (España))
HTML (Español (España))


Aguirre-Mendoza, Z., Linares-Palomino, R., & Peter Kvist, L. (2006). Especies leñosas y formaciones vegetales en los bosques estacionalmente secos de Ecuador y Perú. Arnaldoa, 13, 324-346.

Ajanal, M., Gundkalle, M. B., & Nayak, S. U. (2012). Estimation of total alkaloid in Chitrakadivati by UV-Spectrophotometer. Ancient Science of Life, 31, 198-201.

Al-Mamun, R., Hamid, A., Islam, M. K., & Chowdhury, J. A. (2010). Cytotoxic and thrombolytic activity of leaves extract of Parthenium hysterophorus (Fam:Asteraceae). Bangladesh Pharmaceutical Journal, 13, 51-54.

Amin, M., Sawhney, S., & Jassal, M. M. (2013). Qualitative and quantitative analysis of phytochemicals of Taraxacum officinale. Wudpecker Journal of Pharmacy and Pharmocology, 2, 1-5.

Bailon-Moscoso, N., Romero-Benavides, J., Tinitana-Imaicela, F., & Ostrosky-Wegman, P. (2015). Medicinal plants of Ecuador: a review of plants with anticancer potential and their chemical composition. Medicinal Chemistry Research, 24, 2283-2296.

Bennett, R. N., & Wallsgrove, R. M. (1994). Secondary metabolites in plant defense mechanisms. New Phytology, 127, 617-633.

Bouzada, M., Fabri, R., Nogueira, M., Konno, T., Duarte, G., & Scio, E. (2009). Antibacterial, cytotoxic and phytochemical screening of some traditional medicinal plants in Brazil. Pharmaceutical Biology, 47, 44-52.

Bun, S. S., Laget, M., Chea, A., Bun, H., Ollivier, E., & Elias, R. (2009). Cytotoxic activity of alkaloids isolated from Stephania rotunda. In vitro cytotoxic activity of cepharanthine. Phytotherapy Research, 23, 587-590.

Canadanovic‐Brunet, J., Djilas, S., Cetkovic, G., & Tumbas, V. T. (2005). Free‐radical scavenging activity of wormwood (Artemisia absinthium L) extracts. Journal of the Science of Food and Agriculture, 85, 265-272.

Cerón, C. E. (2006). Plantas medicinales de los Andes Ecuatorianos. En M. Moraes, B. Ollgaard, L. P. Kvist, F. Borchsenius, & H. Balslev (Eds.), Botánica Económica de los andes Centrales (pp. 285-293). La Paz, Bolivia: Universidad Mayor de San Ándres.

Chung, K. T., Cheng-I Wei, Ch., & Johnson, M. (1998). Are tannins a double-edged sword in biology and health? Trends in Food Science & Technology, 9, 168-175.

Coe, F. G., Parikh, D. M., & Johnson, C. (2010). Alkaloid presence and brine shrimp (Artemia salina) bioassay of medicinal species of eastern Nicaragua. Pharmaceutical Biology, 48, 439-445.

CYTED (1995). Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo. Manual de Técnicas de Investigación. Colombia: CYTED.

Diagayete, M., & Huss, W. (1981). Tannin contents of African pasture plants: Effects on analytical data and in vitro digestibility. Animal Research and Development, 15, 79-90.

Elena, D. L. (2012). Pharmacognostic methods for analysis of herbal drugs, According to European Pharmacopoeia. Romania: University of Medicine and Pharmacy ”Carol Davila” Bucharest, Faculty of Pharmacy.

Escalante-Erosa, F., Ortegón-Campos, I., Parra-Tabla, V., & Peña-Rodríguez, L. (2004). Chemical Composition of the Epicuticular Wax of Cnidoscolus aconitifolius. Journal of the Mexican Chemical Society, 48, 24-25.

Escudero, N. L., De Arellano, M. L., Fernández, S., Albarracín, G., & Mucciarelli, S. (2003). Taraxacum officinale as a food source. Plant Foods for Human Nutrition, 58, 1-10.

FAO/WHO (1991). Joint FAO/WHO Food Standards Programme. Codex Alimentarius Commission XII. Supplement 4. Rome, Italy: FAO.

Francisco, I. A., & Pimenta Pinotti, M. H. (2000). Cyanogenic glycosides in plants. Brazilian Archives of Biology and Technology, 43, 487-492.

Ghaima, K. K., Hashim, N. M., & Ali, S. A. (2013). Antibacterial and antioxidant activities of ethyl acetate extract of nettle (Urtica dioica) and dandelion (Taraxacum officinale). Journal of Applied Pharmaceutical Science, 3, 96-99.

Guerra, J., Nogueiras, C., Delgado, R., & Hernández, O. (2001). Determinación cuantitativa de saponinas y azucares reductores del Agave brittoniana T. Revista Cubana de Química, 13, 37-42.

Gutiérrez, D., Ortiz, D., Muñoz, G., Bah, M., & Serrano, V. (2010). Contenido de sustancias antinutricionales de malezas usadas como forraje. Revista Latinoamericana de Química, 38, 58-67.

Ikpefan, E. O. (2013). In vitro comparative cytotoxic and growth inhibitory effects of the methanol extracts of the leaf stem and root barks of Cnidoscolus acontifolius (mill.) Johnst (euphorbiaceae). International Journal of Bioassays, 2, 445-449.

Iriti, M., & Faoro, F. (2009). Chemical diversity and defense metabolism: How plants cope with pathogens and ozone pollution. International Journal of Molecular Sciences, 10, 3371-3399.

James, O., Nnacheta, O. P., & Ameh, O. (2008). Polyphenol contents, cytotoxicity and antioxidant activities of some selected Nigerian vegetable foods. International Journal of Chemical Sciences, 6, 1714-1725.

Javed, A., Mir, S., & Naqui, R. (2012). Preliminary pharmacognostical standardization of aerial parts of Artemisia absinthium Linn. International Research Journal of Pharmacy, 3, 217-220.

Johnson, R., & Wichern, D. (1992). Applied multivariate statistical analysis. New Jersey: Prentice-Hall Int.

Johnson-Senjobi, C. T., Moody, J. O., & Ettu, A. O. (2011). Antimicrobial and cytotoxic effects of Cnidoscolus aconitifolius (Miller). Journal of Agriculture and Biological Sciences, 2, 21-25.

Koo, H-N., Hong, S-H., Song, B., Kim, Ch., Yoo, Y., & Kim, H. (2004). Taraxacum officinale induces cytotoxicity through TNF-a and IL-1a secretion in Hep G2 cells. Life Sciences, 74, 1149-1157.

Kuti, J. O., & Konuru, H. B. (2004). Antioxidant capacity and phenolic content in leaf extracts of tree spinach (Cnidoscolus spp.). Journal of Agricultural and Food Chemistry, 52, 117-121.

Kuti, J. O., & Konoru, H. B. (2006). Cyanogenic glycosides content in two edible leaves of tree spinach (Cnidoscolus spp.). Journal of Food Composition and Analysis, 19, 556-561.

Lee, Y., Thiruvengadam, M., Chung, I., & Nagella, P. (2013). Polyphenol composition and antioxidant activity from the vegetable plant Artemisia absinthium L. Australian Journal of Crop Science, 7, 1921-1926.

Madan, H., Gogia, S., & Sharma, S. (2011). Antimicrobial and spermicidal activities of Parthenium hysterophorus Linn. and Alstonia scholaris Linn. Indian Journal of Natural Products and Resources, 2, 458-463.

Makkar, H. P., Norvsambuu, T., Lkhagvatseren, S., & Becker, K. (2009). Plant secondary metabolites in some medicinal plants of Mongolia used for enhancing animal health and production. Tropicultura, 27, 159-167.

Mazid, M., Khan, T. A., & Mohammad, F. (2011). Role of secondary metabolites in defense mechanisms of plants. Biology and Medicine, 3, 232-249.

McLaughlin, J. L., & Lingling, L. R. (1998). The use of biological assays to evaluate botanicals. Drug Information Journal, 32, 513-524.

Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E., & McLaughlin, J. L. (1982). Brine shrimp: a convenient general bioassay for active plant constituents. Planta Medica, 45, 31-34.

Mordi, J., & Akanji, M. (2012). Phytochemical screening of the dried leaf Extract of Cnidoscolus aconitifolius and associated changes in liver enzymes induced by its administration in Wistar Rats. Current Research Journal of Biological Sciences, 4, 153-158.

Nganthoi, Y, Duta, B. K., Sagolemcha, R., & Irabanta, N. (2014). Allelopathic effect of Parthenium hysterophorus L. on growth and productivity of Zea mays L. and its phytochemical screening. International Journal of Current Microbiology and Applied Science, 3, 837-846.

Nunes, B., Carvalho, F., & Guilhermino, L. (2006). Effects of widely used pharmaceuticals and a detergent on oxidative stress biomarkers of the crustacean Artemia parthenogenetica. Chemosphere, 62, 581-594.

Nwokoro, O., Ogbonna, J. C., Ubani, C. S., Okpala, G. N., & Ofodile, O. E. (2010). Determination of cyanide in Amanitia muscaria samples using alkaline picrate method. Pakistan Journal of Nutrition, 9, 134-136.

Oliveros-Bastidas, A., Carrera, C., & Marín, D. (2009). Estudio por espectrofotometría Uv-Vis de la reacción entre los iones cianuro y picrato. Un ejemplo práctico de aplicaciones analíticas y estudios cinéticos. Revista Colombiana de Química, 38, 61-82.

Organización Mundial de la Salud (OMS). (1999). Pruebas básicas para medicamentos: Sustancias farmaceúticas, plantas medicinales y formas farmacéuticas. Recuperado de

Organización Mundial para la Salud (OMS). (2002). Pautas generales para las metodologías de investigación y evaluación de la medicina tradicional. Recuperado de: .

Padma, S., & Deepika, S. (2013). Phytochemical screening and in vitro antifungal investigation of parthenium hysterophorus extracts against Alternaria alternate. International Research Journal of Pharmacy, 4, 190-193.

Pandey, A. K. (2007). Anti-staphylococcal activity of a pan-tropical aggressive and obnoxious

weed Parthenium histerophorus: an in vitro study. National Academy Science Letters, 30, 383-386.

Parra, L., Silva, R., Guerra, I., & Iglesia, L. (2001). Comparative study of the assay of Artemia salina L. and the estimate of medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts. Phytomedicine, 8, 395-400.

Patel, V. S., Chitra, V., Prassanna, P. L., & Krishnaraju, V. (2008). Hypoglycemic effect of aqueous extract of Parthenium hysterophorus L in normal and alloxan induced diabetic rats. Indian Journal Pharmacology, 40, 183-185.

Pino, O., & Lazo, F. (2010). Ensayo de Artemia: Útil Herramienta de trabajo para ecotoxicólogos y químicos de productos naturales. Revista de Protección Vegetal, 22, 34-43.

Price, K., Johnson, I., Fenwick, G., & Malinow, M. (1987). The chemistry and biological significance of saponins in foods and feedingstuffs. C R C Critical Reviews in Food Science and Nutrition, 26, 27-135.

Quílez, A., Berenguer, B., Gilardoni, G., Souccar, C., de Mendonça, S., Oliveira, L. F., Martín-Calero, M. J., & Vidari, G. (2010). Anti-secretory, anti-inflammatory and anti-Helicobacter pylori activities of several fractions isolated from Piper carpunya Ruiz & Pav. Journal of Ethnopharmacology, 128, 583-589.

Quinones, M., Miguel, M., & Aleixandre, A. (2012). Los polifenoles, compuestos de origen natural con efectos saludables sobre el sistema cardiovascular. Nutrición Hospitalaria, 27, 76-89.

Reddy, D. M., Qazi, N. A., Sawant, S. D., Bandey, A. H., Srinivas, J., Shankar, M., Singh, S. K., … Sampath, H. M. (2011). Design and synthesis of spiro derivatives of parthenin as novel anticancer agents. European Journal of Medicinal Chemistry, 46, 3210-3217.

Ross-Ibarra, J., & Molina-Cruz, C. (2002). The ethnobotany of chaya (Cnidoscolus aconitifolius ssp. Aconitifolius Breckon): A nutritious Maya vegetable. Economic Botany, 56, 350-365.

Sánchez, O., Kvist, L., & Aguirre, Z. (2006). Bosques secos en Ecuador y sus plantas útiles. En M. Moraes, B. Ollgaard, L. P. Kvist, F. Borchsenius, & H. Balslev (Eds.), Botánica Económica de los andes Centrales (pp. 188-204). La Paz, Bolivia: Universidad Mayor de San Ándres.

Saraiva, A. M., Castro, R. H., Cordeiro, R., Peixoto Sobrinho, T., Castro, V., Amorim, E., Xavier, H., & Pisciottano, M. (2011). In vitro evaluation of antioxidant, antimicrobial and toxicity properties of extracts of Schinopsis brasiliensis Engl. (Anacardiaceae). African Journal of Pharmacy and Pharmacology, 5, 1724-1731.

Savithramma, N., Linga, M., & Suhrulatha, D. (2011). Screening of medicinal plants for secondary metabolites. Middle-East Journal of Scientific Research, 8, 579-584.

Sengul, M., Yildiz, H., Gungor, N., Cetin, B., Eser, Z., & Ercisli, S. (2009). Total phenolic content, antioxidant and antimicrobial activities of some medicinal plants. Pakistan Journal of Pharmaceutical Sciences, 22, 102-106.

Shah, B. A., Chib, R., Gupta, P., Sethi, V. K., Koul, S., Andotra, S. S., Nargotra, A., … Taneja, S. C. (2009). Saponins as novel TNF-α inhibitors: isolation of saponins and a nor-pseudoguaianolide from Parthenium hysterophorus. Organic & Biomolecular Chemistry, 7, 3230-3235.

Shamsa, F., Monsef, H., Ghamooshi, R., & Verdian-rizi, M. (2008). Spectrophotometric determination of total alkaloids in some Iranian medicinal plants. Thai Journal of Pharmaceutical Sciences, 32, 17-20.

Silva, T., Nascimento, R., Batista, M., Agra, M., & Camara, C. A. (2007). Brine shrimp bioassay of some species of Solanum from Northeastern Brazil. Brazilian Journal of Pharmacognosy, 17, 35-38.

Singh, G. (2010). Plant Systematics: An Integrated approach. New Hampshire, USA: Science Publishers Inc.

Smith, A. D. (1964). Cyanide encephalopathy in man. Lancet, 26, 668-670.

Stephan, C. (1977). Methods for calculating an LC50. In F. L. Mayer & J. Hamelink (Eds.), Aquatic Toxicology and Hazard Evaluation. ASTM STP 634 (pp. 65-84). Philadelphia, Pensylvania: American Society for testing and Material.

Suffness, M., & Pezzuto, J. M. (1990). Assays related to cancer drug discovery. In K. Hostettmann (ed.), Methods in Plant Biochemistry: Assays for Bioactivity (pp.71-133). London: Academic Press.

Velásquez, A. (2004). Extracción de taninos presentes en el banano verde. Revista Lasallista de Investigación, 1, 17-22.

Vitorino, H. A., Mantovanelli, L., Zanotto, F. P., & Espósito, B. P. (2015). Iron metallodrugs: Stability, redox activity and toxicity against Artemia salina. PLoS ONE, 10, 1-11. DOI: 10.1371/journal.pone.012199

Yarnell, E., & Abascal, K. (2009). Dandelion (Taraxacum officinale and T. mongolicum). Integrative Medicine, 8, 35-38.

You, Y., Yoo, S., Yoon, H., Park, J., Lee, Y., Kim, S., Oh, K. T., ... Jun, W. (2010). In vitro and in vivo hepatoprotective effects of the aqueous extract from Taraxacum officinale (dandelion) root against alcohol-induced oxidative stress. Food and Chemical Toxicology, 48, 1632-1637.

Zar, J. (1996). Biostatistical Analysis. New Jersey: Prentice Hall.

Zhao, W. M., Qin, G. W., & Lou, L. G. (1999). Evaluation of toxicity of some saponins on brine shrimp. Journal of Asian Natural Product Research, 1, 307-311.



Download data is not yet available.