Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Biomass allocation and gas exchange are affected by light conditions in endangered Cedrela salvadorensis (Meliaceae) seedlings
PT 64-3 set 2016


CO2 response curve
endangered tree species
light preferences
light responses curve
tropical trees.
Curvas de respuesta al CO2
árboles en peligro de extinción
preferencias lumínicas
curvas de respuesta a la luz
árboles tropicales.

How to Cite

Guzmán Q., J. A., Cordero S., R. A., & Corea A., E. (2016). Biomass allocation and gas exchange are affected by light conditions in endangered Cedrela salvadorensis (Meliaceae) seedlings. Revista De Biología Tropical, 64(3), 1143–1154.


The determination of favorable light habitat conditions per species and life stage is transcendental, for both ex situ and in situ conservation strategies of endangered forest tree species, and for their utilization as plantation trees. This becomes especially important when planting material is scarce. We studied the multivariate responses in biomass allocation and in gas exchange to light and to CO2 in Cedrela salvadorensis seedlings, grown under similar light conditions as those this species faces in nature. During a period of 135 days, groups of ten seedlings were put under 75, 45, 15 and 3.5 % of full sun exposure obtained with neutral shade cloth, under nursery conditions. A series of biomass allocation variables and detailed gas exchange parameters (photosynthesis response curves to light and to internal carbon concentration) were measured at the end of the growth period in plants of the four treatments. According to the principal component analyses, highest values of gas exchange response were associated with the lower values of biomass allocation traits. These changes can be associated with resource-conservative and resource-acquisitive strategies, where the C. salvadorensis seedlings acclimatize their traits for the exploration and exploitation of light, to high or to dim light environment, respectively. The multivariate analyses also showed that the plants had a high performance at 45 % of light environment. These results suggest that 45 % of light environment was the optimal light habitat of this species at the tested developing stage. Our results have important implications to choose the best natural habitat for a successful establishment of C. salvadorensis. We propose practical considerations for programs of reforestation or reintroduction where this species be involved.


Adler, P. B., Fajardo, A., Kleinhesselink, A. R., & Kraft, N. J. (2013). Trait-based tests of coexistence mechanisms. Ecology Letters, 16(10), 1294-1306.

Aleric, K., & Kirkman, L. (2005). Growth and photosynthetic responses of the federally endangered shrub, Lindera melissifolia (Lauraceae), to varied light environments. American Journal of Botany, 92, 682-689.

Bazzaz, F., & Pickett, S. (1980). Physiological ecology of tropical succession: a comparative review. Annual Review of Ecology and Systematic, 11, 287-310.

Chazdon, R., & Fetcher, N. (1984). Photosynthetic light environments in a lowland tropical rain forest in Costa Rica. Journal of Ecology, 72(2), 553-564.

Comita, L., & Engelbrecht, B. (2009). Seasonal and spatial variation in water availability drive habitat associations in a tropical forest. Ecology, 90(10), 2755-2765.

Cooke, S., Sack, L., Franklin, C., Farrell, A., Beardall, J., Wikelski, M., & Chown, S. (2013). What is conservation physiology? Perspectives on an increasingly integrated and essential science. Conservation Physiology, 1, 1-23.

Corea, E., Arnaez, E., Moreira, I., Cordero, R., & Castillo, M. (2014). Recurso forestal amenazado: seis especies en peligro crítico de extinción en Costa Rica. Cartago, Costa Rica: Editorial Tecnológica de Costa Rica.

Elliott, S., Navakitbumrung, P., Kuarak, C., Zangkum, S., Anusarnsunthorn, V., & Blakesley, D. (2003). Selecting framework tree species for restoring seasonally dry tropical forests in northern Thailand based on field performance. Forest Ecology and Management, 184, 177-191.

Estrada-Chavarria, A., Rodriguez-Gonzales, A., & Sanchez-Gonzales, J. (2005). Evaluación y categorización del estado de conservación de plantas en Costa Rica. San José, Costa Rica: Museo Nacional de Costa Rica, Insituto Nacional de Biodiversidad, Sistema Nacional de Áreas de Conservación.

Ethier, G. J., & Livingston, N. J. (2004). On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model carbon gain. Plant, Cell & Environment, 27(2), 137-153.

Evans, J., & Poorter, H. (2001). Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell & Environment, 24(8), 755-767.

Farquhar, G. D., von Caemmerer, S. V., & Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1), 78-90.

Givnish, T. (1988). Adaptation to sun and shade: a whole-plant perspective. Functional Plant Biology, 15(2), 63-92.

Grothendieck, G. (2014). nls2: Non-linear regression with brute force. Retrieved from

Guzmán, J., & Cordero, R. (2013). Growth and photosynthetic performance of five tree seedlings species in response to natural light regimes from the Central Pacific of Costa Rica. Revista de Biología Tropical, 61(3), 1433-1444.

Jiménez, Q. (1999). Árboles maderables en peligro de extinción en Costa Rica (2nd ed.). Santo Domingo de Heredia, Costa Rica: Instituto Nacional de Biodiversidad.

Lambers, H., Chapin, F. S., & Pons, T. L. (2008). Plant physiological ecology (2nd ed.). New York, USA: Springer.

Loach, K. (1970). Shade tolerance in tree seedlings. II. Growth analysis of plants raised under artificial shade. New Phytologist, 69, 273-286.

Long, S. P., Humphries, S., & Falkowski, P. G. (1994). Photoinhibition of photosynthesis in nature. Annual Review of Plant Physiology and Plant Molecular Biology, 45(1), 633-662.

Marshall, B., & Biscoe, P. V. (1980). A model for C3 leaves describing the dependence of net photosynthesis on irradiance. Journal of Experimental Botany, 31(1), 29-39.

Medrano, H., Escalona, J. M., Bota, J., Gulias, J., & Flexas, J. (2002). Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Annals of Botany, 89(7), 895-905.

Ministerio de Ambiente y Energía. (1997). Decreto Ejecutivo Nº 25700-MINAE. La Gaceta. Diario Oficial (CR) Vol. 119 (11). Enero 16, 9-10.

Niinemets, Ü., Kull, O., & Tenhunen, J. D. (1998). An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance. Tree Physiology, 18(10), 681-696.

Passioura, J. (2002). “Soil conditions and plant growth”. Plant, Cell and Environment, 25(2), 311-318.

Pearcy, R. (2000). Acclimation to sun and shade. In A. Raghavendra (Ed.), Photosynthesis: a Comprehensive Treatise (pp. 250-263). England: Cambridge University Press.

Poorter, L. (1999). Growth responses of 15 rain-forest tree species to a light gradient: The relative importance of morphological and physiological traits. Functional Ecology, 13(3), 396-410.

Poorter, L. (2001). Light-dependent changes in biomass allocation and their importance for growth of rain forest tree species. Functional Ecology, 15(1), 113-123.

R Development Core Team. (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from

Rojas-Rodríguez, F. & Torres-Cordoba, G. (2013). Árboles del Valle Central de Costa Rica: reproducción Cedro (Cedrela salvadorensis Stadl.). Revista Forestal Mesoamericana Kurú, 10, 34-35.

Rozendaal, D., Hurtado, V., & Poorter, L. (2006). Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Functional Ecology, 20, 207-216.

Schaedle, M. (1975). Tree photosynthesis. Annual Review of Plant Physiology, 26, 101-115.

Smith, M., Wu, Y., & Green, O. (1993). Effect of light and water-stress on photosynthesis and biomass production in Boltonia decurrens (Asteraceae), a threatened species. American Journal of Botany, 80, 859-864.

Tambussi, E. A., & Graciano, C. (2010). Técnicas de medición de intercambio de gases en plantas: curvas de respuesta a la luz y al CO2. In M. E. Fernández & J. E. Gyenge (Eds.), Técnicas de medición en ecofisiología vegetal: conceptos y procedimientos (pp. 109-115). Buenos Aires, Argentina: Ediciones INTA.

Thornley, J. H., & Johnson, I. R. (1990). Plant and crop modelling. Oxford University, USA: Blackbur Prees.

US. Department of Agriculture. Soil Conservation Service 1982. Soil Taxonomy. SMSS Technical Monograph No. 5. p. 139.

Valladares, F., Martinez-Ferri, E., Balaguer, L., Perez-Corona, E., & Manrique, E. (2000). Low leaf-level response to light and nutrients in Mediterranean evergreen oaks: a conservative resource‐use strategy? New Phytologist, 148(1), 79-91.

Valladares, F., & Niinemets, Ü. (2008). Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics, 39(1), 237-257.

Walters, M., & Reich, P. (2000). Seed size, nitrogen supply, and growth rate affect tree seedling survival in deep shape. Ecology, 81(7), 1887-1901.

Wishnie, M., Dent, D., Mariscal, E., Deago, J., Cedeno, N., Ibarra, D., …, & Ashton, P. (2007). Initial performance and reforestation potential of 24 tropical tree species planted across a precipitation gradient in the Republic of Panama. Forest Ecology and Management, 243, 39-49.


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2016 Revista de Biología Tropical


Download data is not yet available.